Cross Reference Down

Posch, PN (2010). Ziffernanalyse. VEW Verlag Europšische Wirtschaft: Munich 2nd edition. GER

This work cites the following items of the Benford Online Bibliography:


Adhikari, AK and Sarkar, BP (1968). Distribution of most significant digit in certain functions whose arguments are random variables. Sankhya-The Indian Journal of Statistics Series B, no. 30, pp. 47-58. ISSN/ISBN:0581-5738. View Complete Reference Online information Works that this work references Works that reference this work
Allaart, PC (1997). An invariant-sum characterization of Benford's law. Journal of Applied Probability 34(1), pp. 288-291. View Complete Reference Online information Works that this work references Works that reference this work
Becker, PW (1982). Patterns in Listings of Failure-Rate and MTTF Values and Listings of Other Data. IEEE Transactions on Reliability 31(2), 132-134. ISSN/ISBN:0018-9529. View Complete Reference Online information Works that this work references Works that reference this work
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572. View Complete Reference Online information No Bibliography works referenced by this work. Works that reference this work
Berger, A, Bunimovich, LA and Hill, TP (2005). One-dimensional dynamical systems and Benford's law. Transactions of the American Mathematical Society 357(1), 197-219. ISSN/ISBN:0002-9947. View Complete Reference Online information Works that this work references Works that reference this work
Boyle, J (1994). An Application of Fourier Series to the Most Significant Digit Problem. American Mathematical Monthly 101(9), 879-886. ISSN/ISBN:0002-9890. View Complete Reference Online information Works that this work references Works that reference this work
Buck, B, Merchant, AC and Perez, SM (1993). An illustration of Benfordís first digit law using alpha decay half lives. European Journal of Physics 14, 59-63. View Complete Reference Online information Works that this work references Works that reference this work
Busta, B and Sundheim, R (1992). Tax return numbers tend to obey Benford's law. Center for Business Research Working Paper No. W93-106-94, St. Cloud State University, Minnesota. View Complete Reference Online information Works that this work references Works that reference this work
Busta, B and Weinberg, R (1998). Using Benfordís law and neural networks as a review procedure. Managerial Auditing Journal 13(6), 356-366. View Complete Reference Online information Works that this work references Works that reference this work
De Ceuster, MJK, Dhaene, G and Schatteman, T (1998). On the hypothesis of psychological barriers in stock markets and Benfordís law. Journal of Empirical Finance 5(3), pp. 263-279. DOI:10.1016/S0927-5398(97)00024-8. View Complete Reference Online information Works that this work references Works that reference this work
Diaconis, P (1977). The Distribution of Leading Digits and Uniform Distribution Mod 1. Annals of Probability 5(1), 72-81. ISSN/ISBN:0091-1798. View Complete Reference Online information Works that this work references Works that reference this work
Feldstein, A and Goodman, R (1976). Convergence Estimates for Distribution of Trailing Digits. Journal of the Association for Computing Machinery, 23(2), 287-297. ISSN/ISBN:0004-5411. View Complete Reference Online information Works that this work references Works that reference this work
Feller, W (1971). An Introduction to Probability Theory and Its Applications. p 63, vol 2, 2nd ed. J. Wiley. View Complete Reference No online information available Works that this work references Works that reference this work
Goto, K (1992). Some examples of Benford sequences. Mathematical Journal of the Okayama University 34, 225-232. View Complete Reference Online information Works that this work references Works that reference this work
Gottwald, GA and Nicol, M (2002). On the nature of Benfordís law. Physica A: Statistical Mechanics and its Applications 303(3-4), 387-396. View Complete Reference Online information Works that this work references Works that reference this work
Hamming, R (1970). On the distribution of numbers. Bell Syst. Tech. J. 49(8), pp. 1609-1625. ISSN/ISBN:0005-8580. DOI:10.1002/j.1538-7305.1970.tb04281.x. View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1988). Random-Number Guessing and the First Digit Phenomenon. Psychological Reports 62(3), pp. 967-971. ISSN/ISBN:0033-2941. DOI:10.2466/pr0.1988.62.3.967. View Complete Reference No online information available Works that this work references Works that reference this work
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1995). The Significant-Digit Phenomenon. American Mathematical Monthly 102(4), pp. 322-327. DOI:10.2307/2974952. View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1995). Base-Invariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887-895. ISSN/ISBN:0002-9939. DOI:10.2307/2160815. View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1999). The difficulty of faking data. Chance 12(3), pp. 27-31. DOI:10.1080/09332480.1999.10542154. View Complete Reference Online information Works that this work references Works that reference this work
Hoyle, DC, Rattray, M, Jupp, R and Brass, A (2002). Making sense of microarray data distributions. Bioinformatics 18(4), pp. 576-584. ISSN/ISBN:1367-4803. DOI:10.1093/bioinformatics/18.4.576. View Complete Reference Online information Works that this work references Works that reference this work
Jamain, A (2001). Benfordís Law. Master Thesis. Imperial College of London and ENSIMAG. View Complete Reference Online information Works that this work references Works that reference this work
Jolion, JM (2001). Images and Benford's Law. Journal of Mathematical Imaging and Vision 14(1), pp. 73-81. ISSN/ISBN:0924-9907. DOI:10.1023/A:1008363415314. View Complete Reference Online information Works that this work references Works that reference this work
Knuth, DE (1997). The Art of Computer Programming. pp. 253-264, vol. 2, 3rd ed, Addison-Wesley, Reading, MA. View Complete Reference No online information available Works that this work references Works that reference this work
Kuipers, L and Niederreiter, H (1974). Uniform Distribution of Sequences. J. Wiley; newer edition - 2006 from Dover. ISSN/ISBN:0486450198. View Complete Reference Online information Works that this work references Works that reference this work
Leemis, LM, Schmeiser, BW and Evans, DL (2000). Survival Distributions Satisfying Benford's Law. American Statistician 54(4), pp. 236-241. ISSN/ISBN:0003-1305. DOI:10.2307/2685773. View Complete Reference Online information Works that this work references Works that reference this work
Ley, E (1996). On the Peculiar Distribution of the US Stock Indexes' Digits. American Statistician 50(4), pp. 311-313. ISSN/ISBN:0003-1305. DOI:10.1080/00031305.1996.10473558. View Complete Reference Online information Works that this work references Works that reference this work
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), 39-40. ISSN/ISBN:0002-9327. View Complete Reference Online information No Bibliography works referenced by this work. Works that reference this work
Nigrini, MJ (1992). The Detection of Income Tax Evasion Through an Analysis of Digital Frequencies. PhD thesis, University of Cincinnati, OH, USA. View Complete Reference Online information Works that this work references Works that reference this work
Nigrini, MJ (1996). A taxpayer compliance application of Benfordís law. Journal of the American Taxation Association 18(1), 72-91. View Complete Reference Online information Works that this work references Works that reference this work
Nigrini, MJ (2000). Digital Analysis Using Benford's Law: Tests Statistics for Auditors. Global Audit Publications, Vancouver, Canada. View Complete Reference No online information available No Bibliography works referenced by this work. Works that reference this work
Pinkham, RS (1961). On the Distribution of First Significant Digits. Annals of Mathematical Statistics 32(4), 1223-1230. ISSN/ISBN:0003-4851. View Complete Reference Online information Works that this work references Works that reference this work
Raimi, RA (1969). The Peculiar Distribution of First Digits. Scientific American 221(6), 109-119. ISSN/ISBN:0036-8733. View Complete Reference No online information available Works that this work references Works that reference this work
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), 521-538. ISSN/ISBN:0002-9890. View Complete Reference Online information Works that this work references Works that reference this work
Raimi, RA (1985). The First Digit Phenomenon Again. Proceedings of the American Philosophical Society 129(2), 211-219. ISSN/ISBN:0003-049X. View Complete Reference Online information Works that this work references Works that reference this work
Renaud, P (2002). Scale invariant means and the first digit problem. New Zealand Journal of Mathematics 31, pp. 73-83. View Complete Reference Online information No Bibliography works referenced by this work. Works that reference this work
Schatte, P (1988). On mantissa distributions in computing and Benfordís law. Journal of Information Processing and Cybernetics EIK 24(9), 443-455. ISSN/ISBN:0863-0593. View Complete Reference Online information Works that this work references Works that reference this work
Schatte, P (1988). On the Almost Sure Convergence of Floating-Point Mantissas and Benford Law. Math. Nachr. 135, 79-83. ISSN/ISBN:0025-584X. DOI:10.1002/mana.19881350108. View Complete Reference Online information Works that this work references Works that reference this work
Schatte, P (1989). On measures of uniformly distributed sequences and Benford's law. Monatshefte fŁr Mathematik 107(3), 245-256. ISSN/ISBN:0026-9255. DOI:10.1007/BF01300347. View Complete Reference Online information Works that this work references Works that reference this work
Schatte, P (1998). On Benford's law to variable base. Statistics & Probability Letters 37(4): 391-397. ISSN/ISBN:0167-7152. DOI:10.1016/S0167-7152(97)00142-9. View Complete Reference Online information Works that this work references Works that reference this work
Scott, PD and Fasli, M (2001). Benfordís law: an empirical investigation and a novel explanation. CSM Technical Report 349, Department of Computer Science, University of Essex, UK. View Complete Reference Online information Works that this work references Works that reference this work
Sentance, WA (1973). A further analysis of Benfordís law. Fibonacci Quarterly 11, 490-494. View Complete Reference No online information available Works that this work references Works that reference this work
Varian, HR (1972). Benfordís law. The American Statistician 26(3), 65-66. View Complete Reference Online information Works that this work references Works that reference this work
Weaver, W (1963). The distribution of first significant digits. pp 270-277 in: Lady Luck: The Theory of Probability, Doubleday Anchor Series, New York. Republished by Dover, 1982. ISSN/ISBN:978-0486243429. View Complete Reference Online information Works that this work references Works that reference this work
Weisstein, EW (2003). Benford's Law. pp 181-182 in: CRC concise encyclopedia of mathematics, Chapman & Hall. View Complete Reference Online information Works that this work references Works that reference this work
Weyl, H (1916). ‹ber die Gleichverteilung von Zahlen mod Eins. Mathematische Annalen 77, 313-352. ISSN/ISBN:0025-5831. DOI:10.1007/BF01475864. GER View Complete Reference Online information No Bibliography works referenced by this work. Works that reference this work
Wlodarski, J (1971). Fibonacci and Lucas Numbers tend to obey Benfordís law. Fibonacci Quarterly 9, 87-88. View Complete Reference No online information available Works that this work references Works that reference this work