This work is cited by the following items of the Benford Online Bibliography:
Alexopoulos, T and Leontsinis, S (2014). Benford's Law in Astronomy. Journal of Astrophysics and Astronomy, 35(4), pp. 639-648. ISSN/ISBN:0250-6335. DOI:10.1007/s12036-014-9303-z. | ||||
Arshadi, L and Jahangir, AH (2014). Benford's law behavior of Internet traffic. Journal of Network and Computer Applications, Volume 40, April 2014, pp. 194–205. ISSN/ISBN:1084-8045. DOI:10.1016/j.jnca.2013.09.007. | ||||
Berger, A and Eshun, G (2014). A characterization of Benford's law in discrete-time linear systems. Journal of Dynamics and Differential Equations, Springer; published online 15 September 2014. ISSN/ISBN:1040-7294. DOI:10.1007/s10884-014-9393-y. | ||||
Berger, A and Eshun, G (2014). Benford solutions of linear difference equations. Theory and Applications of Difference Equations and Discrete Dynamical Systems, Springer Proceedings in Mathematics & Statistics Volume 102, pp. 23-60. ISSN/ISBN:978-3-662-44139-8. DOI:10.1007/978-3-662-44140-4_2. | ||||
Brady, WG (1978). More on Benford’s law. Fibonacci Quarterly 16, 51-52. | ||||
Busta, B and Sundheim, R (1992). Tax return numbers tend to obey Benford's law. Center for Business Research Working Paper No. W93-106-94, St. Cloud State University, Minnesota. | ||||
Busta, B and Weinberg, R (1998). Using Benford’s law and neural networks as a review procedure. Managerial Auditing Journal 13(6), 356-366. | ||||
Cournane, S, Sheehy, N and Cooke, J (2014). The novel application of Benford's second order analysis for monitoring radiation output in interventional radiology. Physica Medica 30(4), pp. 413–418. DOI:10.1016/j.ejmp.2013.11.004. | ||||
Filipponi, P and Menicocci, R (1995). Some Probabilistic Aspects of the Terminal Digits of Fibonacci Numbers. Fibonacci Quarterly 33(4), 325-331. ISSN/ISBN:0015-0517. | ||||
Hürlimann, W (2003). A generalized Benford law and its application. Advances and Applications in Statistics 3(3), pp. 217-228. | ||||
Hürlimann, W (2009). Generalizing Benford’s law using power laws: application to integer sequences. International Journal of Mathematics and Mathematical Sciences, Article ID 970284. DOI:10.1155/2009/970284. | ||||
Iudica, F (2012). Benford’s Law: Mathematical Properties and Forensic Accounting Applications. Master’s Thesis, Luiss Guido Carli University, Rome, Italy, 2012. | ||||
Johnson, GG (2005). Financial Sleuthing Using Benford's Law to Analyze Quarterly Data with Various Industry Profiles. Journal of Forensic Accounting 6(2), pp. 293-316. | ||||
McLaughlin, WI and Lundy, SA (1984). Digit functions of integer sequences. Fibonacci Quarterly 22(2), pp. 105-115. ISSN/ISBN:0015-0517. | ||||
Nagasaka, K (1984). On Benford's Law. Annals of the Institute of Statistical Mathematics 36(2), pp. 337-352. ISSN/ISBN:0020-3157. DOI:10.1007/BF02481974. | ||||
Nigrini, MJ (1992). The Detection of Income Tax Evasion Through an Analysis of Digital Frequencies. PhD thesis, University of Cincinnati, OH, USA. | ||||
Nigrini, MJ (2011). Forensic Analytics: Methods and Techniques for Forensic Accounting Investigations. John Wiley & Sons, Hoboken, New Jersey. ISSN/ISBN:978-0-470-89046-2. | ||||
Nigrini, MJ (2012). Benford's Law: Applications for Forensic Accounting, Auditing, and Fraud Detection . John Wiley & Sons, Hoboken, New Jersey. ISSN/ISBN:978-1-118-15285-0. | ||||
Posch, PN (2008). A Survey on Sequences and Distribution Functions satisfying the First-Digit-Law. Journal of Statistics & Management Systems 11(1), 1-19. | ||||
Posch, PN (2010). Ziffernanalyse. VEW Verlag Europäische Wirtschaft: Munich 2nd edition. GER | ||||
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), 521-538. ISSN/ISBN:0002-9890. | ||||
Sentance, WA (1973). A further analysis of Benford’s law. Fibonacci Quarterly 11, 490-494. | ||||
Slepkov, AD, Ironside, KB and DeBattista, D (2013). Benford's Law: Textbook Exercises and Multiple-choice Testbanks. Preprint posted on physics arXiv - submitted 19 November 2013. | ||||
Slepkov, AD, Ironside, KB and DiBattista, D (2015). Benford’s Law: Textbook Exercises and Multiple-Choice Testbanks. PLoS ONE 10(2): e0117972. DOI:10.1371/journal.pone.0117972. | ||||
Sundheim, R and Busta, B (1993). Fibonacci numbers tend to obey Benford's law: an extension of Wlodarski and Sentance. Working Paper, St. Cloud State University, St. Cloud, Minnesota. | ||||
Washington, LC (1981). Benford’s law for Fibonacci and Lucas numbers. Fibonacci Quarterly 19, 175-177. |