Corazza, M, Ellero, A and Zorzi, A (2018). The importance of being “one” (or Benford’s law). Lettera Matematica 6(1), pp. 33–39. DOI:10.1007/s4032901802184.





Gauvrit, N, Houillon, JC and Delahaye, JP (2017). Generalized Benford’s Law as a Lie Detector. Advances in Cognitive Psychology 13(2), pp. 121127. DOI:10.5709/acp0212x.





Gottwalt, F, Waller, A and Liu, W (2016). Natural Laws as a Baseline for Network Anomaly Detection. In: Proceedings of 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 370377. DOI:10.1109/TrustCom.2016.0086.





Iorliam, A (2019). Combination of Natural Laws (Benford’s Law and Zipf’s Law) for Fake News Detection. In: Cybersecurity in Nigeria. SpringerBriefs in Cybersecurity. Springer, Cham. DOI:10.1007/9783030152109_3.





Iorliam, A, Tirunagari, S, Ho, ATS, Li, S, Waller, A and Poh, N (2017). "Flow Size Difference" Can Make a Difference: Detecting Malicious TCP Network Flows Based on Benford's Law. arXiv:1609.04214v2 [cs.CR], last accessed February 6, 2017.





Li, F, Han, S, Zhang, H, Ding, J, Zhang, J and Wu, J (2019). Application of Benford’s law in Data Analysis. Journal of Physics: Conference Series 1168, pp. 032133. DOI:10.1088/17426596/1168/3/032133.





Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:9780691147611.





Suzuki, T, Kamimasu, T, Nakatoh, T and Hirokawa, S (2018). Identification of Unnatural Subsets in Statistical Data. 7th International Congress on Advanced Applied Informatics (IIAIAAI), pp. 7480. DOI:10.1109/IIAIAAI.2018.00024.




