Barabesi, L, Cerasa, A, Cerioli, A and Perrotta, D (2018). Goodnessoffit testing for the NewcombBenford law with application to the detection of customs fraud. Journal of Business & Economic Statistics 36(2), pp. 346358. DOI:10.1080/07350015.2016.1172014.





Becker, T, Burt, D, Corcoran, TC, GreavesTunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J, Strauch, FW and Talbut, B (2018). Benford's Law and Continuous Dependent Random Variables. Annals of Physics 388, pp. 350–381. DOI:10.1016/j.aop.2017.11.013.





Becker, T, Corcoran, TC, GreavesTunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J and Strauch, FW (2013). Benford's Law and Continuous Dependent Random Variables. Preprint arXiv:1309.5603 [math.PR]; last accessed October 23, 2018. DOI:10.1016/j.aop.2017.11.013.





Benjamin, AT (2019). The Long and the Short of Benford’s Law. Math Horizons 26(4), pp. 89. DOI:10.1080/10724117.2019.1568086.





Berger, A and Twelves, I (2018). On the significands of uniform random variables. Journal of Applied Probability 55(2), pp. 353367. DOI:10.1017/jpr.2018.23.





Berger, A and Xu, C (2018). Best Finite Approximations of Benford’s Law. Journal of Theoretical Probability. DOI:10.1007/s109590180827z.





Best, A, Dynes, P, Edelsbrunner, X, McDonald, B, Miller, SJ, Tor, K, TurnageButterbaugh, C and Weinstein, M (2014). Benford Behavior of Zeckendorf Decompositions. Fibonacci Quarterly 52(5), pp. 35–46.





Best, A, Dynes, P, Edelsbrunner, X, McDonald, B, Miller, SJ, Tor, K, TurnageButterbaugh, C and Weinstein, M (2017). Benford Behavior of Generalized Zeckendorf Decompositions. In: Nathanson M. (eds) Combinatorial and Additive Number Theory II. CANT 2015, CANT 2016. Springer Proceedings in Mathematics & Statistics, vol 220. Springer, Cham. DOI:10.1007/9783319680323_3.





Cai, Z, Faust, M, Hildebrand, AJ, Li, J and Zhang, Y (2017). Leading Digits of Mersenne Numbers. Preprint in arXiv:1712.04425 [math.NT]; last accessed October 23, 2018.





Cai, Z, Hildebrand, AJ and Li, J (2018). A local Benford Law for a class of arithmetic sequences. Preprint arXiv:1808.01496 [math.NT]; last accessed October 22, 2018.





Campos, L, Salvo, AE and FloresMoya, A (2016). Natural taxonomic categories of angiosperms obey Benford's law, but artificial ones do not. Systematics and Biodiversity 14(5), pp. 431440. ISSN/ISBN:14772000 (Print)/ 1. DOI:10.1080/14772000.2016.1181683.





Cerioli, A, Barabesi, L, Cerasa, A, Menegatti, M and Perrotta, D (2019). NewcombBenford law and the detection of frauds in international trade. Proceedings of the National Academy of Sciences 116(1), pp. 106115. DOI:10.1073/pnas.1806617115.





Chang, JC (2017). A Study of Benford's Law, With Applications to the Analysis of Corporate Financial Statements. Masters Thesis, The Graduate School Eberly College of Science, The Pennsylvania State University.





Chen, E, Park, PS and Swaminathan, AA (2016). On logarithmically Benford Sequences. Proc. Amer. Math. Soc. 144, pp. 45994608. DOI:10.1090/proc/13112 .





Chenavier, N and Schneider, D (2018). On the discrepancy of powers of random variables. Statistics & Probability Letters 134, pp. 514. DOI:10.1016/j.spl.2017.10.006.





Corazza, M, Ellero, A and Zorzi, A (2018). The importance of being “one” (or Benford’s law). Lettera Matematica 6(1), pp. 33–39. DOI:10.1007/s4032901802184.





Dang, CT, Burger, R and Owens, T (2019). Better Performing NGOs Do Report More Accurately: Evidence from Investigating Ugandan NGO Financial Accounts. Economic Development and Cultural Change, forthcoming. DOI:10.1086/703099.





Dang, CT and Owens, T (2019). Does transparency come at the cost of charitable services? Evidence from investigating British charities. CREDIT Research Paper 19/02.





Drew, JH, Evans, DL, Glen, AG and Leemis, LM (2017). Products of Random Variables. In:Computational Probability: Algorithms and Applications in the Mathematical Sciences, Springer International Publishing, pp. 7386. ISSN/ISBN:9783319433233. DOI:10.1007/9783319433233.





Drew, JH, Evans, DL, Glen, AG and Leemis, LM (2017). Other Applications. In: Computational Probability. International Series in Operations Research & Management Science, vol 246. Springer, Cham, pp. 301321. ISSN/ISBN:9783319433233. DOI:10.1007/9783319433233_15.





Durst, RF, Huynh, C, Lott, A, Miller, SJ, Palsson, EA, Touw, W and Vreind, G (2016). The Inverse Gamma Distribution and Benford's Law. Preprint in arXiv:1609.04106 [math.PR]; last accessed October 23, 2018.





Durst, RF and Miller, SJ (2017). Benford's Law Beyond Independence: Tracking Benford Behavior in Copula Models. Preprint in arXiv:1801.00212 [math.PR]; last accessed October 23, 2018.





Eliazar, II (2017). Harmonic statistics. Annals of Physics, Volume 380, pp. 168187. DOI:10.1016/j.aop.2017.03.016.





Fu, Q, VillasBoas, SB and Judge, G (2019). Does china income FSDs follow Benford? A comparison between Chinese income first significant digit distribution with Benford distribution. China Economic Journal 12(1), pp. 6876. DOI:10.1080/17538963.2018.1477418.





Goodman, WM (2016). The promises and pitfalls of Benford's law. Significance 13(3) pp. 3841. DOI:10.1111/j.17409713.2016.00919.x.





Gramm, R, Yost, J, Su, Q and Grobe, R (2017). Applications of the first digit law to measure correlations. Phys. Rev. E 95, 042136. DOI:10.1103/PhysRevE.95.042136.





He, X, Hildebrand, AJ, Li, Y and Zhang, Y (2018). Complexity of Leading Digit Sequences. Preprint in arXiv:1804.00221 [math.NT]; last accessed October 23, 2018.





Hürlimann, W (2015). Prime powers and generalized Benford law. Pioneer Journal of Algebra, Number Theory and its Applications 12/2015; 10(12):5170.





Hürlimann, W (2015). A first digit theorem for powerful integer powers. SpringerPlus (2015) 4: 576. DOI:10.1186/s4006401513703.





Hürlimann, W (2016). First digit counting compatibility for Niven integer powers. Journal of Progressive Research in Mathematics 7(4). ISSN/ISBN:23950218.





Hürlimann, W (2016). First digit counting compatibility II: twin prime powers. Journal of Progressive Research in Mathematics(JPRM) 9(1), pp. 13411349. ISSN/ISBN:23950218.





Iafrate, JR, Miller, SJ and Strauch, FW (2015). Equipartitions and a distribution for numbers: A statistical model for Benford's law. Phys. Rev. E 91, 062138. DOI:10.1103/PhysRevE.91.062138.





Lacasa, L (2019). Newcomb–Benford law helps customs officers to detect fraud in international trade. Proceedings of the National Academy of Sciences 116(1), pp. 1113. DOI:10.1073/pnas.1819470116.





Lee, J and de Carvalho, M (2019). Technological improvements or climate change? Bayesian modeling of timevarying conformance to Benford’s Law. PLoS ONE 14(4): e0213300. DOI:10.1371/journal.pone.0213300.





Lesperance, M, Reed, WJ, Stephens, MA, Tsao, C and Wilton, B (2016). Assessing Conformance with Benford’s Law: GoodnessOfFit Tests and Simultaneous Confidence Intervals. PLoS One 11(3): e0151235; published online 2016 Mar 28. DOI:10.1371/journal.pone.0151235.





Manack, C and Miller, SJ (2015). Leading digit laws on linear Lie groups. Research in Number Theory 1:22. DOI:10.1007/s4099301500244.





Miller, SJ (2015). How a simple observation from the 1800s about patterns in big data sets can fight fraud. Posted on TheConversation website (Science + Technology), December 10; last accessed April 11, 2019.





Miller, SJ (2016). Can math detect fraud? CSI: Math: The natural behavior of numbers. Presentation at Science Cafe, Northampton, September 26; last accessed July 4, 2019.





Mir, TA and Ausloos, M (2018). Benford's law: a 'sleeping beauty' sleeping in the dirty pages of logarithmic tables. Journal of the Association for Information Science and Technology 69(3) pp. 349–358. DOI:10.1002/asi.23845.





Nigrini, MJ (2017). Audit Sampling Using Benford's Law: A Review of the Literature With Some New Perspectives. Journal of Emerging Technologies in Accounting Vol. 14, No. 2,
pp. 29–46. DOI:10.2308/jeta51783.





Ozawa, K (2019). Continuous Distributions on (0, ∞) Giving Benford’s Law Exactly. Preprint arXiv:1905.02031 [math.PR]; last accessed June 6, 2019.





Pinilla, J, LópezValcárcel, BG, GonzálezMartel, C and Peiro, S (2018). Pinocchio testing in the forensic analysis of waiting lists: using public waiting list data from Finland and Spain for testing NewcombBenford’s Law. BMJ open,8(5), pp. 16. ISSN/ISBN:20446055. DOI:10.1136/bmjopen2018022079.





Shukla, A, Pandey, AK and Pathak, A (2017). Benford’s distribution in extrasolar world: Do the exoplanets follow Benford’s distribution?. Journal of Astrophysics and Astronomy JOAAD1600138, 38(7). DOI:10.1007/s120360179427z.





Tseng, HC, Huang, WN and Huang, DW (2017). Modified Benford’s law for twoexponent distributions. Scientometrics 110(3), pp. 1403–1413. DOI:DOI 10.1007/s1119201622176.





VillaBoas, S, Fu, Q and Judge, G (2015). Is Benford’s Law a Universal Behavioral Theory?. Econometrics 3(4), pp. 698–708. DOI:10.3390/econometrics3040698.





VillasBoas, SB, Fu, Q and Judge, G (2017). Benford’s law and the FSD distribution of economic behavioral micro data
. Physica A: Statistical Mechanics and its Applications
Volume 486, pp. 711719. DOI:10.1016/j.physa.2017.05.093.





Yan, X, Yang, SG, Kim, BJ and Minnhagen, P (2017). Benford's Law and First Letter of Word. Physica A: Statistical Mechanics and its Applications 512, pp. 305315. DOI:10.1016/j.physa.2018.08.133.




