Cross Reference Down

Gramm, R, Yost, J, Su, Q and Grobe, R (2017). Applications of the first digit law to measure correlations. Phys. Rev. E 95, 042136.

This work cites the following items of the Benford Online Bibliography:


Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572. View Complete Reference Online information No Bibliography works referenced by this work. Works that reference this work
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062. View Complete Reference Online information Works that this work references Works that reference this work
Burke, J and Kincanon, E (1991). Benford's Law and Physical Constants - The Distribution of Initial Digits. American Journal of Physics 59 (10), 952. ISSN/ISBN:0002-9505. View Complete Reference Online information Works that this work references Works that reference this work
Cáceres, JLH, García, JLP and et al. (2008). First digit distribution in some biological data sets. Possible explanations for departures from Benford's Law. Electronic J Biomed 1, 27-35. View Complete Reference Online information Works that this work references Works that reference this work
Gottwald, GA and Nicol, M (2002). On the nature of Benford’s law. Physica A: Statistical Mechanics and its Applications 303(3-4), 387-396. View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1995). Base-Invariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887-895. ISSN/ISBN:0002-9939. DOI:10.2307/2160815. View Complete Reference Online information Works that this work references Works that reference this work
Mebane, WR Jr (2008). Election Forensics: The Second-digit Benford’s Law Test and Recent American Presidential Elections. pp 161-181 in: Alvarez, RM, Hall, TE and Hyde, SD (eds.), Election Fraud: Detecting and Deterring Electoral Manipulation. Brookings Press, Washington DC. ISSN/ISBN:9780815701606. View Complete Reference Online information Works that this work references Works that reference this work
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1. View Complete Reference Online information Works that this work references Works that reference this work
Mir, TA (2016). Citations to articles citing Benford's law: a Benford analysis. arXiv:1602.01205; posted Feb 3, 2016. View Complete Reference Online information Works that this work references Works that reference this work
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148. View Complete Reference Online information No Bibliography works referenced by this work. Works that reference this work
Nigrini, MJ (2012). Benford's Law: Applications for Forensic Accounting, Auditing, and Fraud Detection . John Wiley & Sons, Hoboken, New Jersey. ISSN/ISBN:978-1-118-15285-0. View Complete Reference No online information available Works that this work references Works that reference this work
Pain, J-C (2008). Benford’s law and complex atomic spectra. Physical Review E 77(1): Art. No. 012102. ISSN/ISBN:1539-3755. DOI:10.1103/PhysRevE.77.012102. View Complete Reference Online information Works that this work references Works that reference this work
Sambridge, M, Tkalčić, H and Jackson, A (2010). Benford's law in the Natural Sciences. Geophysical Research Letters 37: L22301. DOI:10.1029/2010GL044830. View Complete Reference Online information Works that this work references Works that reference this work
Shao, L and Ma, BQ (2010). The significant digit law in statistical physics. Physica A 389, 3109-3116. DOI:10.1016/j.physa.2010.04.021. View Complete Reference Online information Works that this work references Works that reference this work