This work cites the following items of the Benford Online Bibliography:
Alves, AD, Yanasse, HH and Soma, NY (2014). Benford's Law and articles of scientific journals: comparison of JCR® and Scopus data. Scientometrics 98, pp. 173-184. ISSN/ISBN:0138-9130. DOI:10.1007/s11192-013-1030-8. | ||||
Ausloos, M, Herteliu, C and Ileanu, B (2015). Breakdown of Benford’s law for birth data. Physica A: Statistical Mechanics and its Applications Volume 419, pp. 736–745. ISSN/ISBN:0378-4371. DOI:10.1016/j.physa.2014.10.041. | ||||
Beebe, NHF (2015). A bibliography of publications about Benford's law, Heap's law and Zipf's law. Available online from: ftp://ftp.math.utah.edu/public_html/public_html/ pub/tex/bib/benfords-law.pdf (last accessed Feb 3, 2015). | ||||
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572. | ||||
Berger, A and Hill, TP (2011). Benford's Law Strikes Back: No Simple Explanation in Sight for Mathematical Gem. The Mathematical Intelligencer 33(1), 85-91. DOI:10.1007/ s00283-010-9182-3. | ||||
Campanario, JM and Coslado, MA (2011). Benford's law and citations, articles and impact factors of scientific journals. Scientometrics, August 2011, Volume 88, Issue 2, pp 421-432. | ||||
Clippe, P and Ausloos, M (2012). Benford's law and Theil transform of financial data. Physica A: Statistical Mechanics and its Applications, 2012, Vol. 391, No. 24, 6556–6567. | ||||
Costa, JI, Travassos, SK and dos Santos, J (2013). Application of Newcomb-Benford Law in accounting audit: A bibliometric analysis in the period from 1988 to 2011. 10th International Conference on Information Systems and Technology Management - CONTECSI June, 12 to 14, 2013 - São Paulo, Brazil, pp. 16-30. POR | ||||
Durtschi, C, Hillison, W and Pacini, C (2004). The effective use of Benford’s law to assist in detecting fraud in accounting data. Journal of Forensic Accounting 1524-5586/Vol. V, 17-34. | ||||
Egghe, L (2011). Benford’s law is a simple consequence of Zipf’s law. ISSI Newsletter, 7(3), 55–56. | ||||
Egghe, L and Guns, R (2012). Applications of the generalized law of Benford to informetric data. Journal of the American Society for Information Science and Technology, Volume 63, Issue 8, 1662-1665, August 2012, doi: 10.1002/asi.22690. ISSN/ISBN:1532-2882. | ||||
Fu, D, Shi, YQ and Su, W (2007). A generalized Benford’s law for JPEG coefficients and its applications in image forensics. Proceedings of SPIE, Volume 6505, Security, Steganography and Watermarking of Multimedia Contents IX, San Jose, California, January 28 - February 1, 2007, pp. 65051L-65051L-11. DOI:10.1117/12.704723. | ||||
Giles, DE (2007). Benford's law and naturally occurring prices in certain eBay auctions. Applied Economics Letters 14(3), pp. 157-161. ISSN/ISBN:1350-4851. | ||||
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. | ||||
Hill, TP (1995). Base-Invariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887-895. ISSN/ISBN:0002-9939. DOI:10.2307/2160815. | ||||
Hill, TP (1999). The difficulty of faking data. Chance 12(3), pp. 27-31. DOI:10.1080/09332480.1999.10542154. | ||||
Hürlimann, W (2006). Benford's Law from 1881 to 2006: A Bibliography. posted on math arXiv July 6, 2006; last accessed February 28, 2016. | ||||
Mir, TA (2012). The law of the leading digits and the world religions. Physica A: Statistical Mechanics and its Applications, 391 (2012), pp. 792-798. DOI:10.1016/j.physa.2011.09.001. | ||||
Mir, TA (2014). The Benford law behavior of the religious activity data. Physica A 408, pp. 1-9. DOI:10.1016/j.physa.2014.03.074. | ||||
Mir, TA, Ausloos, M and Cerqueti, R (2014). Benford’s law predicted digit distribution of aggregated income taxes: the surprising conformity of Italian cities and regions. Eur. Phys. J. B (2014) 87: 261. ISSN/ISBN:1434-6028. DOI:10.1140/epjb/e2014-50525-2. | ||||
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), 39-40. ISSN/ISBN:0002-9327. | ||||
Nigrini, MJ (1996). A taxpayer compliance application of Benford’s law. Journal of the American Taxation Association 18(1), 72-91. | ||||
Nigrini, MJ (2012). Benford's Law: Applications for Forensic Accounting, Auditing, and Fraud Detection . John Wiley & Sons, Hoboken, New Jersey. ISSN/ISBN:978-1-118-15285-0. | ||||
Pietronero, L, Tosatti, E, Tosatti, V and Vespignani, A (2001). Explaining the uneven distribution of numbers in nature: the laws of Benford and Zipf. Physica A - Statistical Mechanics and its Applications 293(1-2), 297-304. ISSN/ISBN:0378-4371. DOI:10.1016/S0378-4371(00)00633-6. | ||||
Pinkham, RS (1961). On the Distribution of First Significant Digits. Annals of Mathematical Statistics 32(4), 1223-1230. ISSN/ISBN:0003-4851. | ||||
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), 521-538. ISSN/ISBN:0002-9890. | ||||
Sambridge, M, Tkalčić, H and Jackson, A (2010). Benford's law in the Natural Sciences. Geophysical Research Letters 37: L22301. DOI:10.1029/2010GL044830. | ||||
Sandron, F (2002). Do populations conform to the law of anomalous numbers?. Population 57(4/5), 753-761 (translated from French by SR Hayford). ISSN/ISBN:1634-2941. DOI:10.3917/popu.204.0761. | ||||
Shao, L and Ma, BQ (2009). First Digit Distribution of Hadron full width. Modern Physics Letters A, 24(40), 3275-3282. ISSN/ISBN:0217-7323. DOI:10.1142/S0217732309031223. |