This work is cited by the following items of the Benford Online Bibliography:
Alexander, J (2009). Remarks on the use of Benford's law. Social Science Research Network (November 13, 2009). Available at SSRN: http://ssrn.com/abstract=1505147 or . DOI:10.2139/ssrn.1505147. | ||||
Fellman, J (2014). The Benford paradox. Journal of statistical and econometric methods 3(4), pp. 1-20. ISSN/ISBN:2241-0384 . | ||||
Fellman, J (2016). En statistisk paradox. Quintensen No.2, pp. 15-17. SWE | ||||
Fellman, J (2017). Benfordparadoxen. Arkhimedes 2017(4), pp. 26-33. SWE | ||||
Gava, AM and Vitiello, L (2014). Inflation, Quarterly Balance Sheets and the Possibility of Fraud: Benford's Law and the Brazilian case. Journal of Accounting, Business & Management Vol. 21 Issue 1, pp. 43-52. ISSN/ISBN:0216-423X. | ||||
Gava, AM and Vitiello, LRdS (2007). Inflation, Quarterly Financial Statements and Fraud: Benford’s Law and the Brazilian Case.. XXXI Encontro da ANPAD, Rio de Janeiro, Sep 22-26, 2007. | ||||
Jasak, Z (2010). Benfordov zakon i reinforcement učenje (Benford's Law and reinforcment learning) . MSc Thesis, University of Tuzla, Bosnia. SRP | ||||
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1. | ||||
Mir, TA (2014). The Benford law behavior of the religious activity data. Physica A 408, pp. 1-9. DOI:10.1016/j.physa.2014.03.074. | ||||
Mir, TA (2016). Citations to articles citing Benford's law: a Benford analysis. arXiv:1602.01205; posted Feb 3, 2016. | ||||
Mir, TA (2016). The leading digit distribution of the worldwide illicit financial flows. Quality & Quantity vol. 50, p. 271-281. DOI:10.1007/s11135-014-0147-z. | ||||
Mir, TA, Ausloos, M and Cerqueti, R (2014). Benford’s law predicted digit distribution of aggregated income taxes: the surprising conformity of Italian cities and regions. Eur. Phys. J. B (2014) 87: 261. ISSN/ISBN:1434-6028. DOI:10.1140/epjb/e2014-50525-2. | ||||
Wojcik, MR (2013). How fast increasing powers of a continuous random variable converge to Benford’s law. Statistics and Probability Letters 83, pp. 2688–2692. ISSN/ISBN:0167-7152. DOI:10.1016/j.spl.2013.09.003. |