Cross Reference Up

Posch, PN (2008). A Survey on Sequences and Distribution Functions satisfying the First-Digit-Law. Journal of Statistics & Management Systems 11(1), pp. 1-19.

This work is cited by the following items of the Benford Online Bibliography:

Note that this list may be incomplete, and is currently being updated. Please check again at a later date.


Costa, JI, Henriques, DBB, Melo, S and dos Santos, J (2012). Análise de métodos contabilométricos para determinação de conformidade da Lei Newcomb-Benford aplicados à auditoria contábil. [An analysis of Benford’s law conformity contabilometric methods applied to audit accounting] . Revista Gestão Pública: Práticas e Desafios, Recife, v. III, n. 6, pp. 292-314. POR View Complete Reference Online information Works that this work references Works that reference this work
Delahaye, J-P (1999). L'étonnante loi de Benford. Pour la Science No. 351, pp. 90-95. FRE View Complete Reference Online information Works that this work references Works that reference this work
Ducharme, RG, Kaci, S and Vovor-Dassu ,C (2020). Smooths Tests of Goodness-of-fit for the Newcomb-Benford distribution. Preprint: arXiv:2003.00520v1 [math.ST]. FRE View Complete Reference Online information Works that this work references No Bibliography works reference this work
Eliahou, S, Massé, B and Schneider, D (2013). On the mantissa distribution of powers of natural and prime numbers. Acta Mathematica Hungarica, 139(1), pp. 49-63. ISSN/ISBN:0236-5294. DOI:10.1007/s10474-012-0244-1. View Complete Reference Online information Works that this work references Works that reference this work
Gauvrit, N and Delahaye, J-P (2008). Pourquoi la loi de Benford n’est pas mystérieuse - A new general explanation of Benford’s law. Mathematiques et sciences humaines/ Mathematics and social sciences, 182(2), pp. 7-15. ISSN/ISBN:0987-6936. DOI:10.4000/msh.10363. FRE View Complete Reference Online information Works that this work references Works that reference this work
Gauvrit, N and Delahaye, J-P (2009). Loi de Benford générale (General Benford Law). Mathématiques et sciences humaines/ Mathematics and Social Sciences 186, pp. 5–15. FRE View Complete Reference Online information Works that this work references Works that reference this work
Jasak, Z (2009). Benford's Law and First Letters. Unpublished manuscript. View Complete Reference No online information available Works that this work references No Bibliography works reference this work
Jasak, Z (2010). Benfordov zakon i reinforcement učenje (Benford's Law and reinforcment learning) . MSc Thesis, University of Tuzla, Bosnia. SRP View Complete Reference Online information Works that this work references Works that reference this work
Jasak, Z (2017). Sum invariance testing and some new properties of Benford's law. Doctorial Dissertation, University of Tuzla, Bosnia and Herzegovina. View Complete Reference Online information Works that this work references Works that reference this work
Jasak, Z and Banjanovic-Mehmedovic, L (2008). Detecting Anomalies by Benford's Law. In Proceedings of IEEE International Symposium on Signal Processing and Information Technology, 2008. ISSPIT 2008, pp. 453-458 . ISSN/ISBN:978-1-4244-3554-8. DOI:10.1109/ISSPIT.2008.4775660. View Complete Reference Online information Works that this work references Works that reference this work
Massé, B and Schneider, D (2011). A survey on weighted densities and their connection with the first digit phenomenon. Rocky Mountain Journal of Mathematics 41(5), 1395-1415. ISSN/ISBN:0035-7596. DOI:10.1216/RMJ-2011-41-5-1395. View Complete Reference Online information Works that this work references Works that reference this work
Massé, B and Schneider, D (2014). The mantissa distribution of the primorial numbers. Acta Arithmetica 163, pp. 45-58. ISSN/ISBN:0065-1036. DOI:10.4064/aa163-1-4. View Complete Reference Online information Works that this work references Works that reference this work
Massé, B and Schneider, D (2015). Fast growing sequences of numbers and the first digit phenomenon . International Journal of Number Theory 11:705, pp. 705--719. DOI:10.1142/S1793042115500384. View Complete Reference Online information Works that this work references Works that reference this work
Posch, PN and Kreiner, WA (2005). A general approach to digital analysis exemplified by stock market indices. Online unpublished manuscript; link broken; copy available upon request. View Complete Reference Online information Works that this work references Works that reference this work