Berger, A (2015). Most linear flows on ℝ^d are Benford
. Journal of Differential Equations 259(5), pp. 1933–1957. DOI:10.1016/j.jde.2015.03.016.





Berger, A and Eshun, G (2016). A characterization of Benford's law in discretetime linear systems. Journal of Dynamics and Differential Equations 28(2), pp. 432469. ISSN/ISBN:10407294. DOI:10.1007/s108840149393y.





Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062.





Cai, Z, Faust, M, Hildebrand, AJ, Li, J and Zhang, Y (2017). Leading Digits of Mersenne Numbers. Preprint in arXiv:1712.04425 [math.NT]; last accessed October 23, 2018.





Cai, Z, Faust, M, Hildebrand, AJ, Li, J and Zhang, Y (2019). Leading digits of Mersenne numbers. Experimental Mathematics, to appear. DOI:10.1080/10586458.2018.1551162.





Cai, Z, Hildebrand, AJ and Li, J (2018). A local Benford Law for a class of arithmetic sequences. Preprint arXiv:1808.01496 [math.NT]; last accessed October 22, 2018.





Chen, E, Park, PS and Swaminathan, AA (2016). On logarithmically Benford Sequences. Proc. Amer. Math. Soc. 144, pp. 45994608. DOI:10.1090/proc/13112 .





Eliahou, S, Massé, B and Schneider, D (2013). On the mantissa distribution of powers of natural and prime numbers. Acta Mathematica Hungarica, 139(1), pp. 4963. ISSN/ISBN:02365294. DOI:10.1007/s1047401202441.





Hill, TP and Fox, RF (2016). Hubble’s Law Implies Benford’s Law for Distances to Galaxies. Journal of Astrophysics and Astronomy 37(1), pp. 18. ISSN/ISBN:09737758. DOI:10.1007/s1203601693731.





Massé, B and Schneider, D (2012). Random number sequences and the first digit phenomenon. Electronic Journal of Probability, Vol 17, Article 86, pp. 117 . DOI:10.1214/EJP.v171900.





Massé, B and Schneider, D (2014). The mantissa distribution of the primorial numbers. Acta Arithmetica 163, pp. 4558. ISSN/ISBN:00651036. DOI:10.4064/aa16314.





Massé, B and Schneider, D (2015). Fast growing sequences of numbers and the first digit phenomenon
. International Journal of Number Theory 11:705, pp. 705719. DOI:10.1142/S1793042115500384.




