This work is cited by the following items of the Benford Online Bibliography:
Amiram, D, Bozanic, Z and Rouen, E (2015). Financial statement errors: evidence from the distributional properties of financial statement numbers. Review of Accounting Studies 20(4), pp. 1540–1593. DOI:10.1007/s11142-015-9333-z. | ||||
Barney, BB and Schulzke, KS (2016). Moderating "Cry Wolf" events with excess MAD in Benford's law research and practice. J. Forensic Account. Res. 1 (1), A66–A90. DOI:10.2308/jfar-51622. | ||||
Becker, T, Burt, D, Corcoran, TC, Greaves-Tunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J, Strauch, FW and Talbut, B (2018). Benford's Law and Continuous Dependent Random Variables. Annals of Physics 388, pp. 350–381. DOI:10.1016/j.aop.2017.11.013. | ||||
Becker, T, Corcoran, TC, Greaves-Tunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J and Strauch, FW (2013). Benford's Law and Continuous Dependent Random Variables. Preprint arXiv:1309.5603 [math.PR]; last accessed October 23, 2018. DOI:10.1016/j.aop.2017.11.013. | ||||
Cinko, M (2014). Testing distribution of BIST-100 returns by Benford law. Journal of Economics, Finance and Accounting – (JEFA) 1(3), pp.184–191. TUR | ||||
Costa, JI (2012). Desenvolvimento de metodologias contabilométricas aplicadas a auditoria contábil digital: uma proposta de análise da lei de Newcomb-Benford para os Tribunais de Contas. Thesis, Universidade Federal de Pernambuco, Recife, Brasil. POR | ||||
Costa, JI, dos Santos, J and Travassos, S (2012). An Analysis of Federal Entities’ Compliance with Public Spending: Applying the Newcomb-Benford Law to the 1st and 2nd Digits of Spending in Two Brazilian States*. R. Cont. Fin. – USP, São Paulo, v. 23, n. 60, pp. 187-198. | ||||
Costa, JI, Travassos, SK and dos Santos, J (2013). Application of Newcomb-Benford Law in accounting audit: A bibliometric analysis in the period from 1988 to 2011. 10th International Conference on Information Systems and Technology Management - CONTECSI June, 12 to 14, 2013 - São Paulo, Brazil, pp. 16-30. POR | ||||
Cournane, S, Sheehy, N and Cooke, J (2014). The novel application of Benford's second order analysis for monitoring radiation output in interventional radiology. Physica Medica 30(4), pp. 413–418. DOI:10.1016/j.ejmp.2013.11.004. | ||||
Das, RC, Mishra, CS and Rajib, P (2017). Detection of Anomalies in Accounting Data Using Benford’s Law: Evidence from India. Journal of Social Science Studies 4(1), pp. 123-139. DOI:10.5296/jsss.v4i1.9873. | ||||
Farbaniec, M, Grabiński, T, Zabłocki, B and Zając, W (2011). Application of the first digit law in credibility evaluation of the financial accounting data based on particular cases. Presentation for 10th International Congress on Internal Control, Internal Audit, Fraud and Anti-Corruption Issues, Kraków, September 14-16, 2011. | ||||
Ferreira, MJM (2013). Lei de Benford e detecção de fraude contabilística – Aplicação à indústria transformadora em Portugal. TRABALHO FINAL DE MESTRADO, Instituto Superior de Economia e Gestão, Universidade Técnica de Lisboa, Portugal. POR | ||||
Fu, Q, Villas-Boas, SB and Judge, G (2019). Does china income FSDs follow Benford? A comparison between Chinese income first significant digit distribution with Benford distribution. China Economic Journal 12(1), pp. 68-76. DOI:10.1080/17538963.2018.1477418. | ||||
Gauvrit, N, Houillon, J-C and Delahaye, J-P (2017). Generalized Benford’s Law as a Lie Detector. Advances in Cognitive Psychology 13(2), pp. 121-127. DOI:10.5709/acp-0212-x. | ||||
Gómez-Camponovo M, Moreno, J, Idrovo, ÁJ, Páez, M and Achkar, M (2016). Monitoring the Paraguayan epidemiological dengue surveillance system (2009-2011) using Benford's law. Biomédica 36, pp. 583-92. DOI:10.7705/biomedica.v36i4.2731. | ||||
Goodman, WM (2013). Reality Checks for a Distributional Assumption: The Case of “Benford’s Law”. JSM Proceedings. Alexandria, VA: American Statistical Association (2013), pp. 2789-2803. (Also published on the Statistical Literacy website, at URL: http://www.statlit.org/pdf/2013-Goodman-ASA.pdf) . | ||||
Grabiński, T, Farbaniec, M, Zabłocki, B and Zając,W ￼ (2012). Application of the First Digit Law in Credibility Evaluation of the Financial-Accounting Data Based on Particular Cases. Auditor Journal for Theory and Practice, Revisor, Godina XV - br. 59 - septembar. ISSN/ISBN:1450-7005. | ||||
Grabski, S (2010). Discussion of 'Data mining journal entries for fraud detection: An exploratory study'. International Journal of Accounting Information Systems, Vol. 11, No. 3, pp. 182–185. DOI:10.1016/j.accinf.2010.07.008. | ||||
Jasak, Z (2009). Benford's Law and First Letters. Unpublished manuscript. | ||||
Jasak, Z (2010). Benfordov zakon i reinforcement učenje (Benford's Law and reinforcment learning) . MSc Thesis, University of Tuzla, Bosnia. SRP | ||||
Jasak, Z (2017). Sum invariance testing and some new properties of Benford's law. Doctorial Dissertation, University of Tuzla, Bosnia and Herzegovina. | ||||
Jasak, Z and Banjanovic-Mehmedovic, L (2008). Detecting Anomalies by Benford's Law. In Proceedings of IEEE International Symposium on Signal Processing and Information Technology, 2008. ISSPIT 2008, pp. 453-458 . ISSN/ISBN:978-1-4244-3554-8. DOI:10.1109/ISSPIT.2008.4775660. | ||||
Kriel, E (2008). Technology Solutions to Detect Fraud. Paper 158-2008, SAS Global Forum 2008. | ||||
Li, Q and Fu, Z (2016). Quantifying non-stationarity effects on organization of atmospheric turbulent eddy motion by Benford’s law. Commun Nonlinear Sci Numer Simulat 33, pp. 91–98. DOI:10.1016/j.cnsns.2015.09.006. | ||||
Li, Q, Fu, Z and Yuan, N (2015). Beyond Benford's Law: Distinguishing Noise from Chaos. PLoS ONE, 10, e0129161. DOI:10.1371/journal.pone.0129161. | ||||
Miller, SJ (2016). Can math detect fraud? CSI: Math: The natural behavior of numbers. Presentation at Science Cafe, Northampton, September 26; last accessed July 4, 2019. | ||||
Miller, SJ and Nigrini, MJ (2006). Order Statistics and Shifted Almost Benford Behavior. Posted on Math Arxiv, January 13, 2006. | ||||
Miller, SJ and Nigrini, MJ (2008). Order Statistics and Benford's Law. International Journal of Mathematics and Mathematical Sciences, Art. ID 382948, 19 pp.. ISSN/ISBN:0161-1712. DOI:10.1155/2008/382948. | ||||
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1. | ||||
Morzy, M, Kajdanowicz, T and Szymański, BK (2016). Benford’s Distribution in Complex Networks. Scientific Reports 6:34917. DOI:1038/srep34917. | ||||
Nigrini, MJ (2011). Forensic Analytics: Methods and Techniques for Forensic Accounting Investigations. John Wiley & Sons: Hoboken, New Jersey. ISSN/ISBN:978-0-470-89046-2. | ||||
Nigrini, MJ (2012). Benford's Law: Applications for Forensic Accounting, Auditing, and Fraud Detection . John Wiley & Sons: Hoboken, New Jersey. ISSN/ISBN:978-1-118-15285-0. DOI:10.1002/9781119203094. | ||||
Nigrini, MJ (2017). Audit Sampling Using Benford's Law: A Review of the Literature With Some New Perspectives. Journal of Emerging Technologies in Accounting Vol. 14, No. 2, pp. 29–46. DOI:10.2308/jeta-51783. | ||||
Overhoff, G (2011). The Impact and Reality of Fraud Auditing - Benford's Law: Why and How To Use It. Course for 22nd Annual ACFE Fraud Conference and Exhibition. | ||||
Seow, P-S, Pan, G and Suwardy, T (2016). Data Mining Journal Entries for Fraud Detection: A Replication of Debreceny and Gray's (2010) Techniques. Journal of Forensic and Investigative Accounting 8(3), pp. 501-514. | ||||
Shi, J, Ausloos, M and Zhu, T (2018). Benford's law is the first significant digit and distribution distances for testing the reliability of financial reports in developing countries. Physica A: Statistical Mechanics and its Applications 492(1), pp. 878-888. DOI:10.1016/j.physa.2017.11.017. | ||||
Sowa, A (2011). Forensic Analytics mittels Newcomb-Benford’s Law. Risk, Fraud & Compliance (ZRFC) 5(11), pp. 215–220. GER | ||||
Yücel, R and Özevin, O (2016). The Application Of Benford Analysis On Balance Sheet Items Of Companies Traded In Bist. Papers On Social Science 2016, pp. 83-97. TUR |