Cross Reference Down

Blondeau Da Silva, S (2018). Benford or not Benford: new results on digits beyond the first. Preprint arXiv:1805.01291v1 [stat.OT]; last accessed July 29, 2018.

This work cites the following items of the Benford Online Bibliography:


Beer, TW (2009). Terminal digit preference: beware of Benford's law. Journal of Clinical Pathology 62(2), p. 192. DOI:10.1136/jcp.2008.061721. View Complete Reference Online information Works that this work references Works that reference this work
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572. View Complete Reference Online information No Bibliography works referenced by this work. Works that reference this work
Burke, J and Kincanon, E (1991). Benford's Law and Physical Constants - The Distribution of Initial Digits. American Journal of Physics 59 (10), p. 952. ISSN/ISBN:0002-9505. DOI:10.1119/1.16838. View Complete Reference Online information Works that this work references Works that reference this work
Diekmann, A (2007). Not the First Digit! Using Benford's Law to Detect Fraudulent Scientific Data. Journal of Applied Statistics 34(3), pp. 321-329. ISSN/ISBN:0266-4763. DOI:10.1080/02664760601004940. View Complete Reference Online information Works that this work references Works that reference this work
Friar, JL, Goldman, T and Pérez–Mercader, J (2012). Genome Sizes and the Benford Distribution. PLoS ONE 7(5): e36624. DOI:10.1371/journal.pone.0036624. View Complete Reference Online information Works that this work references Works that reference this work
Gauvrit, N and Delahaye, J-P (2008). Pourquoi la loi de Benford n’est pas mystérieuse - A new general explanation of Benford’s law. Mathematiques et sciences humaines/ Mathematics and social sciences, 182(2), pp. 7-15. ISSN/ISBN:0987-6936. DOI:10.4000/msh.10363. FRE View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1995). The Significant-Digit Phenomenon. American Mathematical Monthly 102(4), pp. 322-327. DOI:10.2307/2974952. View Complete Reference Online information Works that this work references Works that reference this work
Knuth, DE (1997). The Art of Computer Programming. pp. 253-264, vol. 2, 3rd ed, Addison-Wesley, Reading, MA. View Complete Reference No online information available Works that this work references Works that reference this work
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148. View Complete Reference Online information No Bibliography works referenced by this work. Works that reference this work
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349. View Complete Reference Online information Works that this work references Works that reference this work
Varian, HR (1972). Benford’s law. The American Statistician 26(3), 65-66. DOI:10.1080/00031305.1972.10478934. View Complete Reference Online information Works that this work references Works that reference this work