View Authors A-Z

36 result(s) found for "F":

Fairthorne, RA (1969). Progress in Documentation - Empirical Hyperbolic Distributions (Bradford-Zipf-Mandelbrot) for Bibliometric Description and Prediction. Journal of Documentation 25(4), 319-343; reprinted 2005 in Journal of Documentation 61(2), 171-193. ISSN/ISBN:0022-0418. View Complete Reference Online information Works that this work references Works that reference this work
Falcão, CSS (2014). A lei Benford para a distribuição dos primeiros dígitos. TCC (graduação) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas, Curso de Matemática. POR View Complete Reference Online information Works that this work references No Bibliography works reference this work
Farbaniec, M, Grabiński, T, Zabłocki, B and Zając, W (2011). Application of the first digit law in credibility evaluation of the financial accounting data based on particular cases. Presentation for 10th International Congress on Internal Control, Internal Audit, Fraud and Anti-Corruption Issues, Kraków, September 14-16, 2011. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Farkas, J and Gyürky, G (2010). The significance of using the Newcomb-Benford law as a test of nuclear half-life calculations. Acta Physica Polonica B 41, 1213-1221. ISSN/ISBN:PL 0587-4254. View Complete Reference Online information Works that this work references Works that reference this work
Farnsworth, DF, Horan, KK and Galgon, RM (2007). A guide to Benford's law. Mathematics and Computer Education 41, 230-243. ISSN/ISBN:0730-8639. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Favaretto, F (2007). Verificacao da qualidade de dados atraves da lei de Benford. XXVII Brazilian National Conference on Engineering, October 2007. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Feldstein, A and Goodman, R (1976). Convergence Estimates for Distribution of Trailing Digits. Journal of the Association for Computing Machinery, 23(2), 287-297. ISSN/ISBN:0004-5411. View Complete Reference Online information Works that this work references Works that reference this work
Feldstein, A and Turner, P (1986). Overflow, Underflow, and Severe Loss of Significance in Floating-Point Addition and Subtraction. IMA Journal of Numerical Analysis 6, 241-251. View Complete Reference Online information Works that this work references Works that reference this work
Feldstein, A and Turner, PR (1996). Overflow and underflow in multiplication and division. Applied Numerical Mathematics 21(3), 221-239. ISSN/ISBN:0168-9274. View Complete Reference Online information Works that this work references Works that reference this work
Feldstein, A and Turner, PR (2006). Gradual and tapered overflow and underflow: A functional differential equation and its approximation. Applied Numerical Mathematics 56(3-4), 517-532. ISSN/ISBN:0168-9274. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Feller, W (1971). An Introduction to Probability Theory and Its Applications. p 63, vol 2, 2nd ed. J. Wiley. View Complete Reference No online information available Works that this work references Works that reference this work
Fellman, J (2014). The Benford paradox. Journal of statistical and econometric methods 3(4), pp. 1-20. ISSN/ISBN:2241-0384 . View Complete Reference Online information Works that this work references Works that reference this work
Fellman, J (2016). En statistisk paradox. Quintensen No.2, pp. 15-17. SWE View Complete Reference Online information Works that this work references No Bibliography works reference this work
Ferreira, MJM (2013). Lei de Benford e detecção de fraude contabilística – Aplicação à indústria transformadora em Portugal. TRABALHO FINAL DE MESTRADO, Instituto Superior de Economia e Gestão, Universidade Técnica de Lisboa. POR View Complete Reference Online information Works that this work references No Bibliography works reference this work
Fewster, RM (2009). A simple Explanation of Benford's Law. American Statistician 63(1), 20-25. DOI:10.1198/tast.2009.0005. View Complete Reference Online information Works that this work references Works that reference this work
Filipponi, P (1994). Fn and Ln cannot have the same initial digit. Pi Mu Epsilon Journal 10.1, 5-6. View Complete Reference No online information available No Bibliography works referenced by this work. Works that reference this work
Filipponi, P and Menicocci, R (1995). Some Probabilistic Aspects of the Terminal Digits of Fibonacci Numbers. Fibonacci Quarterly 33(4), 325-331. ISSN/ISBN:0015-0517. View Complete Reference No online information available Works that this work references Works that reference this work
Finch, S (2011). Newcomb-Benford Law. Online publication - last accessed May 02, 2015. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Flam, F (2000). Math formula could help spot tax cheats. The Pittsburg Post-Gazette, 19 April. View Complete Reference No online information available No Bibliography works referenced by this work. No Bibliography works reference this work
Flehinger, BJ (1966). On the Probability that a Random Integer has Initial Digit A. American Mathematical Monthly 73(10), 1056-1061. ISSN/ISBN:0002-9890. View Complete Reference Online information Works that this work references Works that reference this work
Florack, LMJ (1999). Visual representations embodying spacetime structure. Technical Report, University Utrecht, UU-CS-1999-07. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Formann, AK (2010). The Newcomb-Benford Law in Its Relation to Some Common Distributions. PLoS ONE 5(5): e10541. doi:10.1371/journal.pone.0010541. View Complete Reference Online information Works that this work references Works that reference this work
Fox, RF and Hill, TP (2014). Hubble’s Law Implies Benford’s Law for Distances to Stars. Prerprint Physics arXiv; posted on December 4, 2014.. View Complete Reference Online information Works that this work references Works that reference this work
Franel, J (1917). A propos des tables de logarithmes. Festschrift der Naturforschenden Gesellschaft in Zürich, Vierteljahrsschrift 62, 286-295. View Complete Reference Online information No Bibliography works referenced by this work. Works that reference this work
Frank, A (2006). Benford's law. http://reason-and-rhyme.blogspot.com/2006/10/benfords-law.html. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Freidank, C-C and Kusch, A (2008). Das Benfordsche Gesetz als Instrument zur Aufdeckung von Unregelmäßigkeiten im Rahmen der Jahresabschlussprüfung. Wirtschaftswissenschaftliches Studium, Vol. 37, No. 2, pp. 100-102. ISSN/ISBN:0340-1650. GER View Complete Reference Online information Works that this work references Works that reference this work
Frey, B (2006). Spot Faked Data. Hack #64 in: Statistic Hacks, pp 251-262 O'Reilley Media, Sebastopol, CA. ISSN/ISBN:978-0-596-10164-0. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Friar, JL, Goldman, T and Pérez–Mercader, J (2012). Genome Sizes and the Benford Distribution. PLoS ONE 7(5): e36624. doi:10.1371/journal.pone.0036624 Public Library of Science. View Complete Reference Online information Works that this work references Works that reference this work
Friedberg, SH (1984). The Distribution of First Digits. College Mathematics Journal 15(2), 120-125. ISSN/ISBN:0049-4925. View Complete Reference Online information Works that this work references Works that reference this work
Frieden, BR (1999). F-Information, a Unitless Variant of Fisher Information. Foundations of Physics 29(10), 1521-1541. ISSN/ISBN:0015-9018. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Fu, D, Shi, YQ and Su, W (2007). A generalized Benford’s law for JPEG coefficients and its applications in image forensics. Proceedings of SPIE, Volume 6505, Security, Steganography and Watermarking of Multimedia Contents IX, San Jose, California, January 28 - February 1, 2007, pp. 65051L-65051L-11. DOI:10.1117/12.704723. View Complete Reference Online information Works that this work references Works that reference this work
Fuchs, A and Letta, G (1984). Sur le problème du premier chiffre décimal. Boll. Unione Mat. Ital., VI. Ser., B 3, 451-461. View Complete Reference No online information available No Bibliography works referenced by this work. Works that reference this work
Fuchs, A and Letta, G (1996). Le problème du premier chiffre decimal pour les nombres premiers. The Electronic Journal of Combinatorics 3(2), R25. View Complete Reference Online information Works that this work references Works that reference this work
Fuchs, A and Nanopoulos, P (1985). Mesures invariantes par translation, classes de Dynkin first-digit problem. Advances in Mathematics 55, 24-74. View Complete Reference Online information Works that this work references Works that reference this work
Furlan, LV (1946). Das Harmoniegesetz der Statistik: Eine Untersuchung ueber die metrische Interdependenz der sozialen Erscheinungen. Basel, Verlag fuer Recht und Gesellschaft AG, xiii:504p. View Complete Reference Online information No Bibliography works referenced by this work. Works that reference this work
Furry, WH and Hurwitz, H (1945). Distribution of numbers and distribution of significant figures. Nature 155(3924), 52-53. View Complete Reference Online information Works that this work references Works that reference this work