Lu, F and Boritz, JE (2005). Detecting Fraud in Health Insurance Data: Learning to Model Incomplete Benford’s Law Distributions. Machine Learning: ECML 2005 (Proceedings). Lecture Notes in Artificial Intelligence 3270, pp. 633-640.
This work cites the following items of the Benford Online Bibliography:
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572.
|
 |
|
|
|
Bolton, RJ and Hand, DJ (2002). Statistical Fraud Detection: a review. Statistical Science 17(3), pp. 235-249.
|
 |
|
|
|
Busta, B and Weinberg, R (1998). Using Benford’s law and neural networks as a review procedure. Managerial Auditing Journal 13(6), pp. 356-366. DOI:10.1108/02686909810222375.
|
 |
|
|
|
Carslaw, CAPN (1988). Anomalies in Income Numbers: Evidence of Goal Oriented Behavior. The Accounting Review 63(2), pp. 321-327.
|
 |
|
|
|
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237.
|
 |
|
|
|
Nigrini, MJ (2000). Digital Analysis Using Benford's Law: Tests and Statistics for Auditors. Global Audit Publications: Vancouver, Canada. DOI:10.1201/1079/43266.28.9.20010301/30389.4.
|
 |
|
|
|
Nigrini, MJ and Mittermaier, LJ (1997). The use of Benford's Law as an aid in analytical procedures. Auditing - A Journal of Practice & Theory 16(2), 52-67. ISSN/ISBN:0278-0380.
|
 |
|
|
|
Pinkham, RS (1961). On the Distribution of First Significant Digits. Annals of Mathematical Statistics 32(4), pp. 1223-1230. ISSN/ISBN:0003-4851.
|
 |
|
|
|