This work is cited by the following items of the Benford Online Bibliography:
Alali, FA and Romero, S (2013). Benford’s Law: Analyzing a decade of financial data. Journal of Emerging Technologies in Accounting Vol. 10, No. 1, pp. 1-39. DOI:10.2308/jeta-50749. | ||||
Berger, A (2015). Most linear flows on ℝ^d are Benford . Journal of Differential Equations 259(5), pp. 1933–1957. DOI:10.1016/j.jde.2015.03.016. | ||||
Berger, A and Eshun, G (2014). A characterization of Benford's law in discrete-time linear systems. Journal of Dynamics and Differential Equations, Springer; published online 15 September 2014. ISSN/ISBN:1040-7294. DOI:10.1007/s10884-014-9393-y. | ||||
Berger, A and Eshun, G (2014). Benford solutions of linear difference equations. Theory and Applications of Difference Equations and Discrete Dynamical Systems, Springer Proceedings in Mathematics & Statistics Volume 102, pp. 23-60. ISSN/ISBN:978-3-662-44139-8. DOI:10.1007/978-3-662-44140-4_2. | ||||
Brown, RJC (2005). Benford's Law and the screening of analytical data: the case of pollutant concentrations in ambient air. Analyst 130(9), 1280-1285. ISSN/ISBN:0002-2654. | ||||
Costa, J, dos Santos, J and Travassos, S (2012). An Analysis of Federal Entities’ Compliance with Public Spending: Applying the Newcomb-Benford Law to the 1st and 2nd Digits of Spending in Two Brazilian States*. R. Cont. Fin. – USP, Săo Paulo, v. 23, n. 60, pp. 187-198. | ||||
Costa, JI, Travassos, SK and dos Santos, J (2013). Application of Newcomb-Benford Law in accounting audit: A bibliometric analysis in the period from 1988 to 2011. 10th International Conference on Information Systems and Technology Management - CONTECSI June, 12 to 14, 2013 - Săo Paulo, Brazil, pp. 16-30. POR | ||||
De Vries, P and Murk, AJ (2013). Compliance of LC50 and NOEC data with Benford's Law: An indication of reliability?. Ecotoxicology and Environmental Safety 98 (2013) 171–178. DOI:10.1016/j.ecoenv.2013.09.002. | ||||
Debreceny, RS and Gray, GL (2010). Data mining journal entries for fraud detection: An exploratory study. International Journal of Accounting Information Systems, Vol. 11, No. 3, pp. 157–181. DOI:10.1016/j.accinf.2010.08.001. | ||||
Giles, DE (2006). The Exact Asymptotic Distribution Function of Watson's U_{N}^{2} for Testing Goodness-of-Fit with Circular Discrete Data. University of Victoria, Econometrics Working Paper EWP0607. ISSN/ISBN:1485-6441. | ||||
Göb, R (2007). Data Conformance Testing by Digital Analysis–A Critical Review and an Approach to More Appropriate Testing. Quality Engineering 19 (4), 281-297. | ||||
Göb, R (2007). Data Conformance Testing by Digital Analysis - A Critical Review and an Approach to More Appropriate Testing. Quality Engineering Volume 19(4), 281-297 (2007), doi:10.1080/08982110701633721. | ||||
Graham, SDJ, Hasseldine, J and Paton, D (2009). Statistical fraud detection in a commercial lobster fishery. New Zealand Journal of Marine and Freshwater Research Volume 43, Issue 1, 2009, pages 457-463. | ||||
Halperin, M and Lusk, EJ (2016). Navigating the Benford labyrinth: A big-data Analytic protocol illustrated using the Academic library Context. Knowledge Management & E-Learning 8(1), pp. 138-157. | ||||
Harrington, JE (2005). Detecting Cartels. Economics Working Paper 526, Johns Hopkins University; also in 2006 Handbook in antitrust economics. | ||||
Judge, G and Schechter, L (2009). Detecting problems in survey data using Benford’s law. J. Human Resources 44, pp. 1-24. DOI:10.3368/jhr.44.1.1. | ||||
Lee, J and Judge, GC (2008). Identifying falsified clinical data. CUDARE working paper 1073, University of California, Berkeley. | ||||
Lu, OF and Giles, DE (2006). Benford's Law and Psychological Barriers in Certain eBay Auctions. Econometrics Working Paper EWP0606, University of Victoria. ISSN/ISBN:1485-6441. | ||||
Lu, OF and Giles, DE (2010). Benford’s law and psychological barriers in certain eBay auctions. Applied Economics Letters, 17, pp. 1005–1008. DOI:10.1080/13504850802631814. | ||||
Lusk, EJ and Halperin, M (2014). Detecting Newcomb-Benford digital frequency anomalies in the audit context: Suggested x^2 test possibilities. Accounting and Finance Research 3(2), pp. 191-205. DOI:10.5430/afr.v3n2p191. | ||||
Lusk, EJ and Halperin, M (2014). Detecting Digital Frequency Anomalies as Benchmarked against the Newcomb-Benford Theoretical Frequencies: Calibrating the Chi2 Test: A Note. International Business Research 7(2). ISSN/ISBN:1913-9012. DOI:10.5539/ibr.v7n2p72 . | ||||
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1. | ||||
Nebel, J-C and Pezzulli, S (2012). Distribution of Human Genes Observes Zipf's Law. Kingston University Research & Innovation Reports (KURIR), Vol. 8, 2012. ISSN/ISBN:1749-5652. | ||||
Shao, L and Ma, BQ (2010). Empirical mantissa distributions of pulsars. Astroparticle Physics 33, 255-262. DOI:10.1016/j.astropartphys.2010.02.003. | ||||
Shao, L and Ma, BQ (2010). The significant digit law in statistical physics. Physica A 389, 3109-3116. DOI:10.1016/j.physa.2010.04.021. | ||||
Suh, I and Headrick, TC (2010). A comparative analysis of the bootstrap versus traditional statistical procedures applied to digital analysis based on Benford's Law. Journal of Forensic and Investigative Accounting 2(2), 2010, 144-175. |