This work is cited by the following items of the Benford Online Bibliography:
Anderson, KM, Dayaratna, K, Gonshorowski, D and Miller, SJ (2022). A New Benford Test for Clustered Data with Applications to American Elections. Stats 5(3), pp. 841–855. DOI:10.3390/stats5030049 . | ||||
Arshadi, L and Jahangir, AH (2014). Benford's law behavior of Internet traffic. Journal of Network and Computer Applications, Volume 40, April 2014, pp. 194–205. ISSN/ISBN:1084-8045. DOI:10.1016/j.jnca.2013.09.007. | ||||
Barabesi, L, Cerasa, A, Cerioli, A and Perrotta, D (2021). On characterizations and tests of Benford’s law. Journal of the American Statistical Association. DOI:10.1080/01621459.2021.1891927. | ||||
Barabesi, L, Cerioli, A and Di Marzio, M (2023). Statistical models and the Benford hypothesis: a unified framework. TEST. DOI:10.1007/s11749-023-00881-y. | ||||
Berger, A and Hill, TP (2011). A basic theory of Benford's Law . Probability Surveys 8, pp. 1-126. DOI:10.1214/11-PS175. | ||||
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062. | ||||
Bormashenko, E, Shulzinger, E, Whyman, G and Bormashenko, Y (2016). Benford’s law, its applicability and breakdown in the IR spectra of polymers. Physica A 444, pp. 524–529. DOI:10.1016/j.physa.2015.10.090. | ||||
Cong, M, Li, C and Ma, B-Q (2019). First digit law from Laplace transform. Phys. Lett. A, 383(16), pp. 1836-1844. DOI:10.1016/j.physleta.2019.03.017 . | ||||
Cong, M and Ma, B-Q (2019). A Proof of First Digit Law from Laplace Transform. Chinese Physics Letters, 36, 7, 070201. DOI:10.1088/0256-307X/36/7/070201. | ||||
Costas, E, López-Rodas, V, Toro, FJ and Flores-Moya, A (2008). The number of cells in colonies of the cyanobacterium Microcystis aeruginosa satisfies Benford's law. Aquatic Botany 89(3), pp. 341-343. DOI:10.1016/j.aquabot.2008.03.011. | ||||
Davic, RD (2022). Correspondence of Newcomb-Benford law with ecological processes . Posted on bioRxiv preprint server of Cold Springs Harbor Laboratory June 27, 2022 . DOI:10.1101/2022.06.27.497806. | ||||
Dümbgen, L and Leuenberger, C (2008). Explicit Bounds for the Approximation Error in Benford’s Law. Electronic Communications in Probability 13, pp. 99-112. ISSN/ISBN:1083-589X. DOI:10.1214/ECP.v13-1358. | ||||
Fang, G (2022). Investigating Hill’s question for some probability distributions. AIP Advances 12, 095004. DOI:10.1063/5.0100429. | ||||
Fang, G and Chen, Q (2019). Several common probability distributions obey Benford’s law. Physica A: Statistical Mechanics and its Applications, 123129 . DOI:10.1016/j.physa.2019.123129. | ||||
Farnsworth, DF, Horan, KK and Galgon, RM (2007). A guide to Benford's law. Mathematics and Computer Education 41(3), pp. 230-243. ISSN/ISBN:0730-8639. | ||||
Formann, AK (2010). The Newcomb-Benford Law in Its Relation to Some Common Distributions. PLoS ONE 5(5): e10541. DOI:10.1371/journal.pone.0010541. | ||||
Gauvrit, N and Delahaye, J-P (2009). Scatter and regularity imply Benford's Law ... and more. Preprint arXiv: 0910.1359 [math.PR]; last accessed July 18, 2018 . | ||||
Gauvrit, N and Delahaye, J-P (2009). Loi de Benford générale (General Benford Law). Mathématiques et sciences humaines/ Mathematics and Social Sciences 186, pp. 5–15. FRE | ||||
Gauvrit, N and Delahaye, J-P (2011). Scatter and Regularity Implies Benford's Law... and More. in H. Zenil (Ed.) Randomness Through Complexity, Singapore, World Scientific, 53-69. ISSN/ISBN:13978-981-4327-74-9. | ||||
Hüngerbühler, N (2007). Benfords Gesetz über führende Ziffern: Wie die Mathematik Steuersündern das Fürchten lehrt. EDUCETH - Das Bildungsportal der ETH Zürich. GER | ||||
Hürlimann, W (2003). A generalized Benford law and its application. Advances and Applications in Statistics 3(3), pp. 217-228. | ||||
Hürlimann, W (2009). Generalizing Benford’s law using power laws: application to integer sequences. International Journal of Mathematics and Mathematical Sciences, Article ID 970284. DOI:10.1155/2009/970284. | ||||
Hürlimann, W (2015). Benford's Law in Scientific Research. International Journal of Scientific & Engineering Research, Volume 6, Issue 7, pp. 143-148. ISSN/ISBN:2229-5518. | ||||
Kossovsky, AE (2006). Towards a Better Understanding of the Leading Digits Phenomena. posted December 21, 2006 on arXiv:math/0612627. | ||||
Kossovsky, AE (2014). Benford's Law: Theory, the General Law of Relative Quantities, and Forensic Fraud Detection Applications. World Scientific Publishing Company: Singapore. ISSN/ISBN:978-981-4583-68-8. | ||||
Kossovsky, AE (2014). Arithmetical Tugs of War and Benford's Law. Preprint arXiv:1410.2174 [math.ST]; last accessed October 19, 2020. | ||||
Kossovsky, AE (2015). Random Consolidations and Fragmentations Cycles Lead to Benford' Law. Preprint arXiv:1505.05235 [math.ST]; last accessed October 19, 2020. | ||||
Kossovsky, AE (2016). Exponential Growth Series and Benford's Law. Preprint arXiv:1606.04425 [math.ST]; last accessed October 19, 2020. | ||||
Kreuzer, M, Jordan, D, Antkowiak, B, Drexler, B, Kochs, EF and Schneider, G (2014). Brain electrical activity obeys Benford's law. Anesth. Analg. 118(1), pp. 183-91. DOI:10.1213/ANE.0000000000000015. | ||||
Kulikova, AA, Prokhorov, YV and Khokhlov, VI (2006). H.F.D. (H-function Distribution) and Benford's Law. I. Theory of Probability & Its Applications 50(2), pp. 311-315 . DOI:10.1137/S0040585X97981706. | ||||
Lemons, DS, Lemons, N and Peter, W (2021). First Digit Oscillations. Stats 4(3), pp. 595-601. DOI:10.3390/stats4030035. | ||||
Miller, SJ and Nigrini, MJ (2006). Order Statistics and Shifted Almost Benford Behavior. Posted on Math Arxiv, January 13, 2006. | ||||
Miller, SJ and Nigrini, MJ (2008). Order Statistics and Benford's Law. International Journal of Mathematics and Mathematical Sciences, Art. ID 382948. ISSN/ISBN:0161-1712. DOI:10.1155/2008/382948. | ||||
Pröger, L, Griesberger, P, Hackländer, K, Brunner, N and Kühleitner, M (2021). Benford’s Law for Telemetry Data of Wildlife. Stats 4(4), pp. 943–949. DOI:10.3390/ stats4040055. | ||||
Schräpler, J-P (2010). Benford's Law as an instrument for fraud detection in surveys using the data of the Socio-Economic Panel (SOEP). Socio-Economic Panel (SOEP) paper No. 273, March 2, 2010. DOI:10.2139/ssrn.1562574. | ||||
Schräpler, J-P (2011). Benford's Law as an Instrument for Fraud Detection in Surveys Using the Data of the Socio-Economic Panel (SOEP). Jahrbücher für Nationalökonomie und Statistik 231(5-6). DOI:10.1515/jbnst-2011-5-609. | ||||
Seibert, J and Zahrádka, J (2014). First Digit Law and its Application. Scientific Papers of the University of Pardubice Series D, Faculty of Economics and Administration Vol. XXI, No. 30, pp. 75 - 82. CZE | ||||
Shao, L and Ma, BQ (2010). The significant digit law in statistical physics. Physica A 389, 3109-3116. DOI:10.1016/j.physa.2010.04.021. | ||||
Valadier, M (2012). The Benford phenomenon for random variables. Discussion of Feller's way. Math arXiv:1203.2518; posted 19 Apr 2012. | ||||
Wang, L and Ma, B-Q (2023). A concise proof of Benford’s law. Fundamental Research . DOI:10.1016/j.fmre.2023.01.002. | ||||
Wase, V (2020). Benford’s law in the Beale ciphers. Cryptologia 45(3), pp. 282-286. DOI:10.1080/01611194.2020.1821409. | ||||
Whyman, G (2021). Origin, Alternative Expressions of Newcomb-Benford Law and Deviations of Digit Frequencies. Applied Mathematics 12, pp. 578-586. ISSN/ISBN:2152-7385. DOI:10.4236/am.2021.127041. | ||||
Whyman, G, Ohtori, N, Shulzinger, E and Bormashenko, E (2016). Revisiting the Benford law: When the Benford-like distribution of leading digits in sets of numerical data is expectable?. Physica A: Statistical Mechanics and its Applications Volume 461, pp. 595-601. DOI:10.1016/j.physa.2016.06.054. | ||||
Whyman, G, Shulzinger, E and Bormashenko, E (2016). Intuitive considerations clarifying the origin and applicability of the Benford law. Results in Physics Volume 6, pp. 3-6 . DOI:10.1016/j.rinp.2015.11.010. | ||||
Zhou, Q, Tang, H, Turowski, JM, Braun, J, Dietze, M, Walter, F, Yang, C-J and Lagarde, S (2023). Benford’s law as mass movement detector in seismic signals. Preprint - manuscript submitted to Geophysical Research Letters. |