Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572.
|
|
|
|
|
Buck, B, Merchant, AC and Perez, SM (1993). An illustration of Benford’s first digit law using alpha decay half lives. European Journal of Physics 14, pp. 59-63.
|
|
|
|
|
Drake, PD and Nigrini, MJ (2000). Computer assisted analytical procedures using Benford’s law. Journal of Accounting Education 18, pp. 127-146. DOI:10.1016/S0748-5751(00)00008-7.
|
|
|
|
|
Durtschi, C, Hillison, W and Pacini, C (2004). The effective use of Benford’s law to assist in detecting fraud in accounting data. Journal of Forensic Accounting 1524-5586/Vol. V, pp. 17-34.
|
|
|
|
|
Hill, TP (1998). The First-Digit Phenomenon. American Scientist 86 (4), pp. 358-363. ISSN/ISBN:0003-0996. DOI:10.1511/1998.4.358.
|
|
|
|
|
Knuth, DE (1997). The Art of Computer Programming. pp. 253-264, vol. 2, 3rd ed, Addison-Wesley, Reading, MA.
|
|
|
|
|
Livio, M (2002). The Golden Ratio: The Story of Phi, the World’s Most Astonishing Number. New York: Broadway Books, pp. 232-236. ISSN/ISBN:9780307485526.
|
|
|
|
|
Nye, J and Moul, C (2007). The Political Economy of Numbers: On the Application of Benford's Law to International Macroeconomic Statistics. The BE Journal of Macroeconomics 7(1), pp. 1-14. DOI:10.2202/1935-1690.1449.
|
|
|
|
|
Scott, PD and Fasli, M (2001). Benford’s law: an empirical investigation and a novel explanation. CSM Technical Report 349, Department of Computer Science, University of Essex, UK.
|
|
|
|
|