Schürger, K (2008). Extensions of BlackScholes processes and Benford's law. Stochastic Processes and their Applications 118(7), 12191243.
This work is cited by the following items of the Benford Online Bibliography:
Note that this list may be incomplete, and is currently being updated. Please check again at a later date.
Berger, A and Eshun, G (2014). A characterization of Benford's law in discretetime linear systems. Journal of Dynamics and Differential Equations, Springer; published online 15 September 2014. ISSN/ISBN:10407294. DOI:10.1007/s108840149393y.





Berger, A and Eshun, G (2014). Benford solutions of linear difference equations. Theory and Applications of Difference Equations and Discrete Dynamical Systems, Springer Proceedings in Mathematics & Statistics Volume 102, pp. 2360. ISSN/ISBN:9783662441398. DOI:10.1007/9783662441404_2.





Berger, A and Evans, SN (2012). A Limit Theorem for Occupation Measures of Lévy Processes in Compact Groups. To appear in Stochastics and Dynamics.





Berger, A and Hill, TP (2011). A basic theory of Benford's Law . Probability Surveys 8, pp. 1126. DOI:10.1214/11PS175.





Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062.





Gauvrit, N and Delahaye, JP (2009). Scatter and regularity imply Benford's Law ... and more. arXiv preprint http://arxiv.org/pdf/0910.1359.pdf.





Gauvrit, N and Delahaye, JP (2011). Scatter and Regularity Implies Benford's Law... and More. in H. Zenil (Ed.) Randomness Through Complexity, Singapore, World Scientific, 5369. ISSN/ISBN:139789814327749.





Hürlimann, W (2009). Generalizing Benfords law using power laws: application to integer sequences. International Journal of Mathematics and Mathematical Sciences, Article ID 970284. DOI:10.1155/2009/970284.





Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:9780691147611.




