This work is cited by the following items of the Benford Online Bibliography:
Becker, T, Burt, D, Corcoran, TC, Greaves-Tunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J, Strauch, FW and Talbut, B (2018). Benford's Law and Continuous Dependent Random Variables. Annals of Physics 388, pp. 350–381. DOI:10.1016/j.aop.2017.11.013. | ||||
Becker, T, Corcoran, TC, Greaves-Tunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J and Strauch, FW (2013). Benford's Law and Continuous Dependent Random Variables. Preprint arXiv:1309.5603 [math.PR]; last accessed October 23, 2018. DOI:10.1016/j.aop.2017.11.013. | ||||
Bradley, JR and Farnsworth, DL (2009). What is Benford's Law?. Teaching Statistics 31(1), pp. 2-6. DOI:10.1111/j.1467-9639.2009.00347.x. | ||||
Bradley, JR and Farnsworth, DL (2009). Beispiele und Schüleraktivitäten zum BENFORD-Gesetz. Stochastik in der Schule (SiS) 29(3), pp. 28-32 . ISSN/ISBN:1614-0443. GER | ||||
Farnsworth, DF, Horan, KK and Galgon, RM (2007). A guide to Benford's law. Mathematics and Computer Education 41(3), pp. 230-243. ISSN/ISBN:0730-8639. | ||||
Formann, AK (2010). The Newcomb-Benford Law in Its Relation to Some Common Distributions. PLoS ONE 5(5): e10541. DOI:10.1371/journal.pone.0010541. | ||||
Goodman, WM (2013). Reality Checks for a Distributional Assumption: The Case of “Benford’s Law”. JSM Proceedings. Alexandria, VA: American Statistical Association (2013), pp. 2789-2803. (Also published on the Statistical Literacy website, at URL: http://www.statlit.org/pdf/2013-Goodman-ASA.pdf) . | ||||
Grendar, M, Judge, G and Schechter, L (2007). An empirical non-parametric likelihood family of data-based Benford-like distributions. Physica A: Statistical Mechanics and its Applications 380, pp. 429-438. ISSN/ISBN:0378-4371. DOI:10.1016/j.physa.2007.02.062. | ||||
Hartmann, S and Brinkert, D (2018). Aufdeckung von Versicherungsbetrug bei Kfz-Schäden mit Hilfe des Benford-Tests [Detecting insurance fraud for vehicle damage using the Benford test]. Zeitschrift für die gesamte Versicherungswissenschaft 107(4), pp. 41-59. DOI:10.1007/s12297-017-0396-8. GER | ||||
Hürlimann, W (2015). On the uniform random upper bound family of first significant digit distributions. Journal of Informetrics, Volume 9, Issue 2, pp. 349–358. DOI:10.1016/j.joi.2015.02.007. | ||||
Hürlimann, W (2015). Prime powers and generalized Benford law. Pioneer Journal of Algebra, Number Theory and its Applications 12/2015; 10(1-2):51-70. | ||||
Hürlimann, W (2015). Benford's Law in Scientific Research. International Journal of Scientific & Engineering Research, Volume 6, Issue 7, pp. 143-148. ISSN/ISBN:2229-5518. | ||||
Ikoba, NA, Jolayemi, ET and Sanni, OOM (2018). Nigeria’s recent population censuses: a Benford-theoretic evaluation. African Population Studies 32(1), pp. 3974-3981. DOI:10.11564/32-1-1166. | ||||
Judge, G and Schechter, L (2009). Detecting problems in survey data using Benford’s law. J. Human Resources 44, pp. 1-24. DOI:10.3368/jhr.44.1.1. | ||||
Lee, J, Cho, WKT and Judge, G (2010). Stigler’s approach to recovering the distribution of first significant digits in natural data sets. Statistics and Probability Letters 80(2), pp. 82-88. DOI:10.1016/j.spl.2009.09.015. | ||||
Lin, F, Guan, L and Fang, W (2011). Heaping In Reported Earnings: Evidence from Monthly Financial Reports of Taiwanese Firms. Emerging Markets Finance & Trade / January–February 2011, Vol. 47, No. 2, pp. 62–73. ISSN/ISBN:1540-496X. DOI:10.2753/REE1540-496X470205. | ||||
Mebane, WR Jr (2007). Statistics for digits. 2007 Summer Meeting of the Political Methodology Society, Penn State University, University Park, PA. | ||||
Mebane, WR Jr (2007). Election Forensics: Statistics, Recounts and Fraud. Presented at the 2007 Annual Meeting of the Midwest Political Science Association, Chicago, IL, April 12–16. | ||||
Mebane, WR Jr (2010). Fraud in the 2009 presidential election in Iran?. Chance 23(1), pp. 6-15. DOI:10.1080/09332480.2010.10739785. | ||||
Mebane, WR Jr (2010). Election Fraud or Strategic Voting? Can Second-digit Tests Tell the Difference?. Prepared for Presentation at the 2010 Summer Meeting of the Political Methodology Society. University of Iowa. | ||||
Mebane, WR Jr (2011). Comment on “Benford's Law and the Detection of Election Fraud”. Political Analysis 19(3), pp. 269-272. DOI:10.1093/pan/mpr024. | ||||
Mebane, WR Jr (2012). Second-digit Tests for Voters’ Election Strategies and Election Fraud. Prepared for presentation at the 2012 Annual Meeting of the Midwest Political Science Association, Chicago, April 12–15; last accessed Apr 11, 2019. | ||||
Mebane, WR Jr (2013). Election Forensics: The Meanings of Precinct Vote Counts’ Second Digits. Prepared for presentation at the 2013 Summer Meeting of the Political Methodology Society, University of Virginia, July 18–20. | ||||
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1. | ||||
Morrow, J (2010). Benford's Law, Families of Distributions and a Test Basis. E-print formerly published on www.johnmorrow.info; last accessed Aug 22, 2016. Link no longer available.. | ||||
Morrow, J (2014). Benford’s Law, Families of Distributions and a Test Basis. Center for Economic Performance Discussion Paper No 1291. | ||||
Nigrini, MJ (2005). An Assessment of the Change in the Incidence of Earnings Management Around the Enron-Andersen Episode. Review of Accounting and Finance 4, pp. 92-110. DOI:10.1108/eb043420. | ||||
Perras, J (2006). Benford's Law. The Delta-Epsilon McGill Mathematics Magazine, Issue 1, pp. 14-15. ISSN/ISBN:1911-9003. | ||||
Phatarfod, R (2013). Some aspects of the Benford law of leading significant digits. The Mathematical Scientist, Applied Probability Trust, 38 (2), pp 73-85. ISSN/ISBN:03123685. | ||||
Watrin, C, Struffert, R and Ullmann, R (2008). Benford’s Law: an instrument for selecting tax audit targets?. Review of Managerial Science 2(3), 219-237. DOI:10.1007/s11846-008-0019-9. | ||||
Winter, C, Schneider, M and Yannikos, Y (2011). Detecting Fraud Using Modified Benford Analysis. Advances in Digital Forensics VII, 7th IFIP WG 11.9 International Conference on Digital Forensics, Orlando, FL, USA, January 31 – February 2, 2011, Revised Selected Papers. Gilbert Peterson and Sujeet Shenoi (Editors). IFIP Advances in Information and Co. ISSN/ISBN:1868-4238. DOI:10.1007/978-3-642-24212-0_10. | ||||
Winter, C, Schneider, M and Yannikos, Y (2012). Model-Based Digit Analysis for Fraud Detection overcomes Limitations of Benford Analysis. Availability, Reliability and Security (ARES 2012), Seventh International Conference, August 20–24, 2012, Prague, Czech Republic. IEEE CS volume E4775, pages 255–261. IEEE Computer Society. ISSN/ISBN:978-1-4673-2244-7 . DOI:10.1109/ARES.2012.37. | ||||
Wong, SCY (2010). Testing Benford’s Law with the first two significant digits. Master's Thesis, University of Victoria, Canada. |