Cross Reference Up

Barlow, JL and Bareiss, EH (1985). On Roundoff Error Distributions in Floating Point and Logarithmic Arithmetic. Computing 34(4), 325-347.

This work is cited by the following items of the Benford Online Bibliography:

Note that this list may be incomplete, and is currently being updated. Please check again at a later date.


Ausloos, M, Herteliu, C and Ileanu, B (2015). Breakdown of Benfordís law for birth data. Physica A: Statistical Mechanics and its Applications Volume 419, pp. 736Ė745. ISSN/ISBN:0378-4371. DOI:10.1016/j.physa.2014.10.041. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A and Hill, TP (2007). Newtonís method obeys Benfordís law. American Mathematical Monthly 114 (7), 588-601. ISSN/ISBN:0002-9890. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A and Hill, TP (2011). A basic theory of Benford's Law . Probability Surveys 8, pp. 1-126. DOI:10.1214/11-PS175. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062. View Complete Reference Online information Works that this work references Works that reference this work
Boyle, J (1994). An Application of Fourier Series to the Most Significant Digit Problem. American Mathematical Monthly 101(9), 879-886. ISSN/ISBN:0002-9890. View Complete Reference Online information Works that this work references Works that reference this work
Clenshaw, CV, Olver, FWJ and Turner, PR (1989). Level-Index Arithmetic - An Introductory Survey. Lecture Notes in Mathematics 1397, pp 95-168. ISSN/ISBN:0075-8434. View Complete Reference Online information Works that this work references Works that reference this work
Clippe, P and Ausloos, M (2012). Benford's law and Theil transform of financial data. Physica A: Statistical Mechanics and its Applications, 2012, Vol. 391, No. 24, 6556Ė6567. View Complete Reference Online information Works that this work references Works that reference this work
Del Acebo, E and Sbert, M (2005). Benford's Law for Natural and Synthetic Images. Proc. of the First Workshop on Computational Aesthetics in Graphics, Visualization and Imaging, L. Neumann, M. Sbert, B. Gooch, and W. Purgathofer, Eds., Girona, Spain, May 2005, pp. 169Ė176. ISSN/ISBN:1816-0859. DOI:10.2312/COMPAESTH/COMPAESTH05/169-176. View Complete Reference Online information Works that this work references Works that reference this work
Feldstein, A and Turner, P (1986). Overflow, Underflow, and Severe Loss of Significance in Floating-Point Addition and Subtraction. IMA Journal of Numerical Analysis 6, 241-251. View Complete Reference Online information Works that this work references Works that reference this work
Feldstein, A and Turner, PR (1996). Overflow and underflow in multiplication and division. Applied Numerical Mathematics 21(3), 221-239. ISSN/ISBN:0168-9274. View Complete Reference Online information Works that this work references Works that reference this work
Feldstein, A and Turner, PR (2006). Gradual and tapered overflow and underflow: A functional differential equation and its approximation. Applied Numerical Mathematics 56(3-4), 517-532. ISSN/ISBN:0168-9274. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. View Complete Reference Online information Works that this work references Works that reference this work
Knuth, DE (1997). The Art of Computer Programming. pp. 253-264, vol. 2, 3rd ed, Addison-Wesley, Reading, MA. View Complete Reference No online information available Works that this work references Works that reference this work
Li, Z, Cong, L and Wang, H (2004). Discussion on Benfordís law and its application. posted on arXiv:math/0408057, Aug 4, 2004. View Complete Reference Online information Works that this work references Works that reference this work
Mir, TA (2011). Law of the leading digits and the ideological struggle for numbers. physics arXiv:1104.3948. DOI:10.1016/j.physa.2011.09.001. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Mir, TA (2012). The law of the leading digits and the world religions. Physica A: Statistical Mechanics and its Applications, 391 (2012), pp. 792-798. DOI:10.1016/j.physa.2011.09.001. View Complete Reference Online information Works that this work references Works that reference this work
Nebel, J-C and Pezzulli, S (2012). Distribution of Human Genes Observes Zipf's Law. Kingston University Research & Innovation Reports (KURIR), Vol. 8, 2012. ISSN/ISBN:1749-5652. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Nigrini, MJ (1992). The Detection of Income Tax Evasion Through an Analysis of Digital Frequencies. PhD thesis, University of Cincinnati, OH, USA. View Complete Reference Online information Works that this work references Works that reference this work
Schatte, P (1987). On the Asymptotic Behaviour of the Mantissa Distributions of Sums. Journal of Information Processing and Cybernetics EIK 23(7), 353-360. View Complete Reference Online information Works that this work references Works that reference this work
Schatte, P (1988). On mantissa distributions in computing and Benfordís law. Journal of Information Processing and Cybernetics EIK 24(9), 443-455. ISSN/ISBN:0863-0593. View Complete Reference Online information Works that this work references Works that reference this work
Schatte, P (1988). On the Almost Sure Convergence of Floating-Point Mantissas and Benford Law. Math. Nachr. 135, 79-83. ISSN/ISBN:0025-584X. DOI:10.1002/mana.19881350108. View Complete Reference Online information Works that this work references Works that reference this work
Schatte, P (1988). On a law of the iterated logarithm for sums mod 1 with application to Benford's law. Probability Theory and Related Fields 77(2), 167-178. ISSN/ISBN:0178-8051. DOI:10.1007/BF00334035. View Complete Reference Online information Works that this work references Works that reference this work
Shao, L and Ma, BQ (2009). First Digit Distribution of Hadron full width. Modern Physics Letters A, 24(40), 3275-3282. ISSN/ISBN:0217-7323. DOI:10.1142/S0217732309031223. View Complete Reference Online information Works that this work references Works that reference this work
Shao, L and Ma, BQ (2010). Empirical mantissa distributions of pulsars. Astroparticle Physics 33, 255-262. DOI:10.1016/j.astropartphys.2010.02.003. View Complete Reference Online information Works that this work references Works that reference this work
Shao, L and Ma, BQ (2010). The significant digit law in statistical physics. Physica A 389, 3109-3116. DOI:10.1016/j.physa.2010.04.021. View Complete Reference Online information Works that this work references Works that reference this work
Slepkov, AD, Ironside, KB and DeBattista, D (2013). Benford's Law: Textbook Exercises and Multiple-choice Testbanks. Preprint posted on physics arXiv - submitted 19 November 2013. View Complete Reference Online information Works that this work references Works that reference this work
Slepkov, AD, Ironside, KB and DiBattista, D (2015). Benfordís Law: Textbook Exercises and Multiple-Choice Testbanks. PLoS ONE 10(2): e0117972. DOI:10.1371/journal.pone.0117972. View Complete Reference Online information Works that this work references Works that reference this work
Weisstein, EW (2003). Benford's Law. pp 181-182 in: CRC concise encyclopedia of mathematics, Chapman & Hall. View Complete Reference Online information Works that this work references Works that reference this work
Weisstein, EW (2009). Benford's Law. MathWorld (A Wolfram Web Resource). View Complete Reference Online information Works that this work references Works that reference this work