Cross Reference Up

Hill, TP and Schürger, K (2005). Regularity of digits and significant digits of random variables. Journal of Stochastic Processes and their Applications 115(10), pp. 1723-1743.

This work is cited by the following items of the Benford Online Bibliography:

Note that this list may be incomplete, and is currently being updated. Please check again at a later date.


Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062. View Complete Reference Online information Works that this work references Works that reference this work
Dümbgen, L and Leuenberger, C (2008). Explicit Bounds for the Approximation Error in Benford’s Law. Electronic Communications in Probability 13, 99-112. ISSN/ISBN:1083-589X. View Complete Reference Online information Works that this work references Works that reference this work
Göb, R (2007). Data Conformance Testing by Digital Analysis–A Critical Review and an Approach to More Appropriate Testing. Quality Engineering 19 (4), 281-297. View Complete Reference Online information Works that this work references Works that reference this work
Göb, R (2007). Data Conformance Testing by Digital Analysis - A Critical Review and an Approach to More Appropriate Testing. Quality Engineering Volume 19(4), 281-297 (2007), doi:10.1080/08982110701633721. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Gonzalez-Garcia, J and Pastor, G (2009). Benford’s Law and Macroeconomic Data Quality. International Monetary Fund Working Paper WP/09/10, Statistics Department, January 2009. View Complete Reference Online information Works that this work references Works that reference this work
Grendar, M, Judge, G and Schechter, L (2007). An empirical non-parametric likelihood family of data-based Benford-like distributions. Physica A: Statistical Mechanics and its Applications 380, 429-438. ISSN/ISBN:0378-4371. View Complete Reference Online information Works that this work references Works that reference this work
Judge, G and Schechter, L (2009). Detecting problems in survey data using Benford’s law. J. Human Resources 44, pp. 1-24. DOI:10.3368/jhr.44.1.1. View Complete Reference Online information Works that this work references Works that reference this work
Lipovetsky, S (2008). Comparison among different patterns of priority vectors estimation methods. International Journal of Mathematical Education in Science 39(3), pp. 301-311. DOI:10.1080/00207390701639532. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Lolbert, T (2006). Digital Analysis: Theory and Applications in Auditing. Hungarian Statistical Review 84, Special number 10, p. 148. ISSN/ISBN:0039 0690. View Complete Reference Online information Works that this work references Works that reference this work
Lolbert, T (2007). Statisztikai eljárások alkalmazása az ellenőrzésben (Applications of statistical methods in monitoring). PhD thesis, Corvinus University, Budapest, Hungary. HUN View Complete Reference Online information Works that this work references No Bibliography works reference this work
Schürger, K (2008). Extensions of Black-Scholes processes and Benford's law. Stochastic Processes and their Applications 118(7), 1219-1243. ISSN/ISBN:0304-4149. DOI:10.1016/j.spa.2007.07.017. View Complete Reference Online information Works that this work references Works that reference this work
Shao, L and Ma, BQ (2010). Empirical mantissa distributions of pulsars. Astroparticle Physics 33, 255-262. DOI:10.1016/j.astropartphys.2010.02.003. View Complete Reference Online information Works that this work references Works that reference this work
Shao, L and Ma, BQ (2010). The significant digit law in statistical physics. Physica A 389, 3109-3116. DOI:10.1016/j.physa.2010.04.021. View Complete Reference Online information Works that this work references Works that reference this work
Torres, J, Fernandez, S, Gamero, A and Sola, A (2007). How do numbers begin? (The first digit law). European Journal of Physics 28(3), L17-L25. ISSN/ISBN:0143-0807. DOI:10.1088/0143-0807/28/3/N04. View Complete Reference Online information Works that this work references Works that reference this work