Cross Reference Up

Cohen, DIA and Katz, TM (1984). Prime Numbers and the First Digit Phenomenon. Journal of Number Theory 18(3), 261-268.

This work is cited by the following items of the Benford Online Bibliography:

Note that this list may be incomplete, and is currently being updated. Please check again at a later date.


Berger, A (2015). Most linear flows on ℝ^d are Benford . Journal of Differential Equations 259(5), pp. 1933–1957. DOI:10.1016/j.jde.2015.03.016. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Berger, A and Eshun, G (2014). A characterization of Benford's law in discrete-time linear systems. Journal of Dynamics and Differential Equations, Springer; published online 15 September 2014. ISSN/ISBN:1040-7294. DOI:10.1007/s10884-014-9393-y. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A and Eshun, G (2014). Benford solutions of linear difference equations. Theory and Applications of Difference Equations and Discrete Dynamical Systems, Springer Proceedings in Mathematics & Statistics Volume 102, pp. 23-60. ISSN/ISBN:978-3-662-44139-8. DOI:10.1007/978-3-662-44140-4_2. View Complete Reference Online information Works that this work references Works that reference this work
Caldwell, CC (2008). Does Benford's law apply to prime numbers?. The Prime Pages. View Complete Reference Online information Works that this work references Works that reference this work
Eliahou, S, Massé, B and Schneider, D (2013). On the mantissa distribution of powers of natural and prime numbers. Acta Mathematica Hungarica, Volume 139, Issue 1 (2013), pp. 49-63, doi: 10.1007/s10474-012-0244-1. ISSN/ISBN:0236-5294. View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. View Complete Reference Online information Works that this work references Works that reference this work
Hürlimann, W (2003). A generalized Benford law and its application. Advances and Applications in Statistics 3(3), pp. 217-228. View Complete Reference Online information Works that this work references Works that reference this work
Hürlimann, W (2004). Integer powers and Benford’s law. International Journal of Pure and Applied Mathematics 11(1), pp. 39-46. View Complete Reference No online information available Works that this work references Works that reference this work
Hürlimann, W (2009). Generalizing Benford’s law using power laws: application to integer sequences. International Journal of Mathematics and Mathematical Sciences, Article ID 970284. DOI:10.1155/2009/970284. View Complete Reference Online information Works that this work references Works that reference this work
Kafri, O (2009). Entropy Principle in Direct Derivation of Benford's Law. posted on arXiv 8 March 2009 - arXiv:0901.3047v2. View Complete Reference Online information Works that this work references Works that reference this work
Katz, TM and Cohen, DIA (1986). The first digit property for exponential sequences is independent of the underlying distribution. Fibonacci Quarterly 24(1), pp. 2-7. View Complete Reference No online information available Works that this work references Works that reference this work
Kunoff, S (1987). N! has the first digit property. Fibonacci Quarterly 25, pp. 365-367. View Complete Reference No online information available Works that this work references Works that reference this work
Massé, B and Schneider, D (2014). The mantissa distribution of the primorial numbers. Acta Arithmetica 163, pp. 45-58. ISSN/ISBN:0065-1036. DOI:10.4064/aa163-1-4. View Complete Reference Online information Works that this work references Works that reference this work
Massé, B and Schneider, D (2015). Fast growing sequences of numbers and the first digit phenomenon . International Journal of Number Theory 11:705, pp. 705--719. DOI:10.1142/S1793042115500384. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Nagasaka, K, Kanemitsu, S and Shiue, JS (1990). Benford’s law: The logarithmic law of first digit. pp 361-391 in: Győry, K, Halász, G. (eds.) Number theory. Vol. I. Elementary and analytic, Proc. Conf., Budapest/Hung. 1987, Colloq. Math. Soc. János Bolyai 51. View Complete Reference No online information available Works that this work references Works that reference this work
Ross, KA (2011). Benford's Law, a growth industry. American Mathematical Monthly 118 (7), pp. 571-583. ISSN/ISBN:0002-9890. DOI:10.4169/amer.math.monthly.118.07.571. View Complete Reference Online information Works that this work references Works that reference this work
Schatte, P (1988). On mantissa distributions in computing and Benford’s law. Journal of Information Processing and Cybernetics EIK 24(9), 443-455. ISSN/ISBN:0863-0593. View Complete Reference Online information Works that this work references Works that reference this work
Toledo, PA, Riquelme, SR and Campos, JA (2015). Earthquake source parameters that display the first digit phenomenon. Nonlin. Processes Geophys., 22(5), pp. 625–632. DOI:10.5194/npg-22-625-2015. View Complete Reference Online information Works that this work references No Bibliography works reference this work