This work is cited by the following items of the Benford Online Bibliography:
Beber, B and Scacco, A (2012). What the Numbers Say: A Digit-Based Test for Election Fraud. Political Analysis 20 (2), pp. 211-234. DOI:10.1093/pan/mps003. | ||||
Cole, MA, Maddison, DJ and Zhang, L (2020). Testing the emission reduction claims of CDM projects using the Benford's Law. Climatic Change 160 (3), pp. 407–426. DOI:10.1007/s10584-019-02593-5. | ||||
Costa, JI (2012). Desenvolvimento de metodologias contabilométricas aplicadas a auditoria contábil digital: uma proposta de análise da lei de Newcomb-Benford para os Tribunais de Contas. Thesis, Universidade Federal de Pernambuco, Recife, Brasil. POR | ||||
Filho, DF, Silva, L and Carvalhoa, E (2022). The forensics of fraud: Evidence from the 2018 Brazilian presidential election. Forensic Science International: Synergy, p. 100286. ISSN/ISBN:2589-871X. DOI:10.1016/j.fsisyn.2022.100286. | ||||
Jasak, Z (2017). Sum invariance testing and some new properties of Benford's law. Doctorial Dissertation, University of Tuzla, Bosnia and Herzegovina. | ||||
Ullman, R and Watrin, C (2017). Detecting Target-Driven Earnings Management Based on the Distribution of Digits. Journal of Business Finance & Accounting 44 (1-2), pp. 63-93. DOI:10.1111/jbfa.12223. | ||||
Wang, H, Liu, T, Zhang, Y, Wu, Y, Sun, Y, Dong, J and Huang, W (2023). Last Digit Tendency: Lucky Numbers and Psychological Rounding in Mobile Transactions. Fundamental Research. DOI:10.1016/j.fmre.2023.11.011. |