This work is cited by the following items of the Benford Online Bibliography:
Alexopoulos, T and Leontsinis, S (2014). Benford's Law in Astronomy. Journal of Astrophysics and Astronomy, 35(4), pp. 639-648. ISSN/ISBN:0250-6335. DOI:10.1007/s12036-014-9303-z. | ||||
Ausloos, M, Castellano, R and Cerqueti, R (2016). Regularities and discrepancies of credit default swaps: a data science approach through Benford's law. Chaos, Solitons & Fractals 90, pp. 8-17. DOI:10.1016/j.chaos.2016.03.002. | ||||
Baumeister, J and Macedo, TG (2011). Von den Zufallszahlen und ihrem Gebrauch. Stand: 21, November 2011. GER | ||||
Bera, A, Mishra, U, Roy, SS, Biswas, A, Sen, A and Sen, U (2018). Benford analysis of quantum critical phenomena: First digit provides high finite-size scaling exponent while first two and further are not much better. Physics Letters A 382(25), pp. 1639–1644 . DOI:10.1016/j.physleta.2018.04.020. | ||||
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062. | ||||
Bhole, G, Shukla, A and Mahesh, TS (2014). Benford distributions in NMR. Preprint arXiv:1406.7077 [physics.data-an]; last accessed June 7, 2018. | ||||
Bhole, G, Shukla, A and Mahesh, TS (2015). Benford analysis: A useful paradigm for spectroscopic analysis. Chemical Physics Letters 639, pp. 36–40. DOI:10.1016/j.cplett.2015.08.061. | ||||
Chanda, T, Das, T, Sadhukhan, D, Pal, AK, Sen(De), A and Sen, U (2015). Statistics of leading digits leads to unification of quantum correlations. Europhysics Letters 114(3). DOI:10.1209/0295-5075/114/30004. | ||||
Davic, RD (2022). Correspondence of Newcomb-Benford law with ecological processes . Posted on bioRxiv preprint server of Cold Springs Harbor Laboratory June 27, 2022 . DOI:10.1101/2022.06.27.497806. | ||||
Diaz, J, Gallart, J and Ruiz, M (2014). On the Ability of the Benford’s Law to Detect Earthquakes and Discriminate Seismic Signals. Seismological Research Letters 86(1), pp. 192-201. DOI:10.1785/0220140131. | ||||
Li, Q and Fu, Z (2016). Quantifying non-stationarity effects on organization of atmospheric turbulent eddy motion by Benford’s law. Commun Nonlinear Sci Numer Simulat 33, pp. 91–98. DOI:10.1016/j.cnsns.2015.09.006. | ||||
Li, Q, Fu, Z and Yuan, N (2015). Beyond Benford's Law: Distinguishing Noise from Chaos. PLoS ONE, 10, e0129161. DOI:10.1371/journal.pone.0129161. | ||||
Parreño, SJE (2023). Assessing the quality of dengue data in the Philippines using Newcomb-Benford law. Sapienza: International Journal of Interdisciplinary Studies 4(3). DOI:10.51798/sijis.v4i3.662. | ||||
Rane, AD, Mishra, U, Biswas, A, De, AS and Sen, U (2014). Benford's law gives better scale exponents in phase transitions of quantum XY models. Phys. Rev. E 90(2), p. 022144 (previously available from http://arxiv.org/abs/1405.2744). DOI:10.1103/PhysRevE.90.022144. | ||||
Sambridge, M, Tkalčić, H and Arroucau, P (2011). Benford's Law of First Digits: From Mathematical Curiosity to Change Detector. Asia Pacific Mathematics Newsletter 1(4), October 2011, 1-6. ISSN/ISBN:2010-3484. | ||||
Seenivasan, P, Easwaran, S, Sridhar, S and Sinha, S (2016). Using Skewness and the First-Digit Phenomenon to Identify Dynamical Transitions in Cardiac Models. Frontiers in Physiology 6, p. 390. DOI:10.3389/fphys.2015.00390. | ||||
Yang, L and Fu, Z (2017). Out-phased decadal precipitation regime shift in China and the United States. Theor Appl Climatol (2017) 130, pp. 535–544. DOI:10.1007/s00704-016-1907-6. |