This work is cited by the following items of the Benford Online Bibliography:
Berger, A and Hill, TP (2010). Fundamental Flaws in Feller’s Classical Derivation of Benford’s Law. University of Alberta preprint; posted on math arXiv 14May 2010. | ||||
Berger, A and Hill, TP (2011). Benford's Law Strikes Back: No Simple Explanation in Sight for Mathematical Gem. The Mathematical Intelligencer 33(1), pp. 85-91. DOI:10.1007/ s00283-010-9182-3. | ||||
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062. | ||||
Berger, A and Twelves, I (2018). On the significands of uniform random variables. Journal of Applied Probability 55(2), pp. 353-367. DOI:10.1017/jpr.2018.23. | ||||
Block, HW and Savits, TH (2010). A General Example for Benford Data. The American Statistician 64(4), pp. 335-339. | ||||
Cong, M, Li, C and Ma, B-Q (2019). First digit law from Laplace transform. Phys. Lett. A, 383(16), pp. 1836-1844. DOI:10.1016/j.physleta.2019.03.017 . | ||||
Fellman, J (2014). The Benford paradox. Journal of statistical and econometric methods 3(4), pp. 1-20. ISSN/ISBN:2241-0384 . | ||||
Fellman, J (2017). Benfordparadoxen. Arkhimedes 2017(4), pp. 26-33. SWE | ||||
Goodman, WM (2013). Reality Checks for a Distributional Assumption: The Case of “Benford’s Law”. JSM Proceedings. Alexandria, VA: American Statistical Association (2013), pp. 2789-2803. (Also published on the Statistical Literacy website, at URL: http://www.statlit.org/pdf/2013-Goodman-ASA.pdf) . |