Berger, A (2005). Benford’s Law in power-like dynamical systems. Stochastics and Dynamics 5, pp. 587-607. ISSN/ISBN:0219-4937. DOI:10.1142/S0219493705001602.
|
|
|
|
|
Berger, A (2005). Multi-dimensional dynamical systems and Benford's law. Discrete and Continuous Dynamical Systems 13(1), pp. 219-237. ISSN/ISBN:1078-0947. DOI:10.3934/dcds.2005.13.219.
|
|
|
|
|
Berger, A (2011). Some dynamical properties of Benford sequences. Journal of Difference Equations and Applications 17(2), pp. 137-159. DOI:10.1080/10236198.2010.549012.
|
|
|
|
|
Berger, A, Bunimovich, LA and Hill, TP (2005). One-dimensional dynamical systems and Benford's law. Transactions of the American Mathematical Society 357(1), pp. 197-219. ISSN/ISBN:0002-9947. DOI:10.1090/S0002-9947-04-03455-5.
|
|
|
|
|
Berger, A and Eshun, G (2014). Benford solutions of linear difference equations. Theory and Applications of Difference Equations and Discrete Dynamical Systems, Springer Proceedings in Mathematics & Statistics Volume 102, pp. 23-60. ISSN/ISBN:978-3-662-44139-8. DOI:10.1007/978-3-662-44140-4_2.
|
|
|
|
|
Berger, A and Eshun, G (2016). A characterization of Benford's law in discrete-time linear systems. Journal of Dynamics and Differential Equations 28(2), pp. 432-469. ISSN/ISBN:1040-7294. DOI:10.1007/s10884-014-9393-y.
|
|
|
|
|
Berger, A and Siegmund, S (2007). On the distribution of mantissae in nonautonomous difference equations. Journal of Difference Equations and Applications 13(8-9), pp. 829-845. ISSN/ISBN:1023-6198. DOI:10.1080/10236190701388039.
|
|
|
|
|
Best, A, Dynes, P, Edelsbrunner, X, McDonald, B, Miller, SJ, Tor, K, Turnage-Butterbaugh, C and Weinstein, M (2014). Benford Behavior of Zeckendorf Decompositions. Fibonacci Quarterly 52(5), pp. 35–46.
|
|
|
|
|
Best, A, Dynes, P, Edelsbrunner, X, McDonald, B, Miller, SJ, Tor, K, Turnage-Butterbaugh, C and Weinstein, M (2017). Benford Behavior of Generalized Zeckendorf Decompositions. In: Nathanson M. (eds) Combinatorial and Additive Number Theory II. CANT 2015, CANT 2016. Springer Proceedings in Mathematics & Statistics, vol 220. Springer, Cham. DOI:10.1007/978-3-319-68032-3_3.
|
|
|
|
|
Finch, S (2011). Newcomb-Benford Law. Online publication - last accessed July 16, 2018.
|
|
|
|
|
Hürlimann, W (2003). A generalized Benford law and its application. Advances and Applications in Statistics 3(3), pp. 217-228.
|
|
|
|
|
Hürlimann, W (2004). Integer powers and Benford’s law. International Journal of Pure and Applied Mathematics 11(1), pp. 39-46.
|
|
|
|
|
Hürlimann, W (2009). Generalizing Benford’s law using power laws: application to integer sequences. International Journal of Mathematics and Mathematical Sciences, Article ID 970284. DOI:10.1155/2009/970284.
|
|
|
|
|
Jang, D, Kang, JU, Kruckman, A, Kudo, J and Miller, SJ (2009). Chains of distributions, hierarchical Bayesian models and Benford's Law. Journal of Algebra, Number Theory: Advances and Applications 1(1), pp. 37-60.
|
|
|
|
|
Kanemitsu, S, Nagasaka, K, Rauzy, G and Shiue, JS (1988). On Benford’s law: the first digit problem. Lecture Notes in Mathematics 1299, pp. 158-169 (eds. Watanabe, S, and Prokhorov, YV). ISSN/ISBN:978-3-540-18814-8. DOI:10.1007/BFb0078471.
|
|
|
|
|
Kuipers, L and Niederreiter, H (1974). Uniform Distribution of Sequences. J. Wiley; newer edition - 2006 from Dover. ISSN/ISBN:0486450198.
|
|
|
|
|
Kuipers, L and Shiue, JS (1973). Remark on a paper by Duncan and Brown on the sequence of logarithms of certain recursive sequences. Fibonacci Quarterly 11(3), pp. 292-294.
|
|
|
|
|
Manack, C and Miller, SJ (2015). Leading digit laws on linear Lie groups. Research in Number Theory 1:22. DOI:10.1007/s40993-015-0024-4.
|
|
|
|
|
Miller, SJ (2008). Benford’s Law and Fraud Detection, or: Why the IRS Should Care About Number Theory!. Presentation for Bronfman Science Lunch Williams College, October 21.
|
|
|
|
|
Miller, SJ (2016). Can math detect fraud? CSI: Math: The natural behavior of numbers. Presentation at Science Cafe, Northampton, September 26; last accessed July 4, 2019.
|
|
|
|
|
Miller, SJ and Nigrini, MJ (2006). Order Statistics and Shifted Almost Benford Behavior. Posted on Math Arxiv, January 13, 2006.
|
|
|
|
|
Miller, SJ and Nigrini, MJ (2008). The Modulo 1 Central Limit Theorem and Benford's Law for Products. International Journal of Algebra 2(3), pp. 119 - 130.
|
|
|
|
|
Miller, SJ and Nigrini, MJ (2008). Order Statistics and Benford's Law. International Journal of Mathematics and Mathematical Sciences, Art. ID 382948. ISSN/ISBN:0161-1712. DOI:10.1155/2008/382948.
|
|
|
|
|
Miller, SJ and Takloo-Bighash, R (2006). An invitation to modern number theory. Princeton University Press. ISSN/ISBN:978-0691120607.
|
|
|
|
|
Miller, SJ and Takloo-Bighash, R (2007). Introduction to Random Matrix Theory. In: An Invitation to Modern Number Theory, Princeton University Press. ISSN/ISBN:9780691120607.
|
|
|
|
|
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1.
|
|
|
|
|
Nagasaka, K (1984). On Benford's Law. Annals of the Institute of Statistical Mathematics 36(2), pp. 337-352. ISSN/ISBN:0020-3157. DOI:10.1007/BF02481974.
|
|
|
|
|
Nagasaka, K and Shiue, JS (1987). Benford's law for linear recurrence sequences. Tsukuba Journal of Mathematics 11(2), pp. 341-351.
|
|
|
|
|
Nigrini, MJ (2012). Benford's Law: Applications for Forensic Accounting, Auditing, and Fraud Detection . John Wiley & Sons: Hoboken, New Jersey. ISSN/ISBN:978-1-118-15285-0. DOI:10.1002/9781119203094.
|
|
|
|
|
Peters, JV (1981). An equivalent form of Benford's law. Fibonacci Quarterly 19(1), pp. 74-76. ISSN/ISBN:0015-0517.
|
|
|
|
|
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349.
|
|
|
|
|
Schatte, P (1988). On the uniform distribution of certain sequences and Benford’s law. Math. Nachr. 136, 271-273. DOI:10.1002/mana.19881360119.
|
|
|
|
|
Strauch, O (2013). Unsolved Problems. Tatra Mountains Mathematical Publications 56(3), pp. 175-178. DOI:10.2478/tmmp-2013-0029.
|
|
|
|
|