This work is cited by the following items of the Benford Online Bibliography:
Barlow, JL and Bareiss, EH (1985). On Roundoff Error Distributions in Floating Point and Logarithmic Arithmetic. Computing 34(4), pp. 325-347. ISSN/ISBN:0010-485X. DOI:10.1007/BF02251833. | ||||
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062. | ||||
Brähler, G, Bensmann, M and Emke, AL (2010). Der Einsatz mathematisch-statistischer Methoden in der digitalen Betriebsprüfung. Illmenauer Schriften zur Betriebswirtschaftslehre 4/2010. GER | ||||
Burgos, A and Santos, A (2021). The Newcomb–Benford law: Scale invariance and a simple Markov process based on it (Previous title: The Newcomb–Benford law: Do physicists use more frequently the key 1 than the key 9?). Preprint arXiv:2101.12068 [physics.pop-ph]; last accessed August 8, 2022; Published Am. J. Phys. 89, pp. 851-861. | ||||
Caldwell, CK (2008). Does Benford's law apply to prime numbers?. From: The Prime Pages (prime number research, records and resources) FAQ. | ||||
Ciofalo, M (2009). Entropy, Benford’s first digit law, and the distribution of everything. Unpublished manuscript. | ||||
Clenshaw, CV, Olver, FWJ and Turner, PR (1989). Level-Index Arithmetic - An Introductory Survey. Lecture Notes in Mathematics 1397, pp. 95-168. ISSN/ISBN:0075-8434. DOI:10.1007/BFb0085718. | ||||
Cohen, DIA (1976). An Explanation of the First Digit Phenomenon. Journal of Combinatorial Theory Series A 20(3), pp. 367-370. ISSN/ISBN:0097-3165. | ||||
Davis, B (1976). Some Remarks on Initial Digits. Fibonacci Quarterly 14(1), pp. 13-14. ISSN/ISBN:0015-0517. | ||||
Drmota, M and Tichy, RF (1997). Sequences, Discrepancies and Applications. Lecture Notes in Mathematics 1651. | ||||
Farnsworth, DF, Horan, KK and Galgon, RM (2007). A guide to Benford's law. Mathematics and Computer Education 41(3), pp. 230-243. ISSN/ISBN:0730-8639. | ||||
Ferreira, MJM (2013). Lei de Benford e detecção de fraude contabilística – Aplicação à indústria transformadora em Portugal. TRABALHO FINAL DE MESTRADO, Instituto Superior de Economia e Gestão, Universidade Técnica de Lisboa, Portugal. POR | ||||
Forster, RP (2006). Auditoria contábil em entidades do terceiro setor : uma aplicação da Lei Newcomb-Benford. Universidade de Brasília, Brasília. POR | ||||
Gava, AM and Vitiello, L (2014). Inflation, Quarterly Balance Sheets and the Possibility of Fraud: Benford's Law and the Brazilian case. Journal of Accounting, Business & Management Vol. 21 Issue 1, pp. 43-52. ISSN/ISBN:0216-423X. | ||||
Gava, AM and Vitiello, LRdS (2007). Inflation, Quarterly Financial Statements and Fraud: Benford’s Law and the Brazilian Case. XXXI Encontro da ANPAD, Rio de Janeiro, Sep 22-26, 2007. | ||||
Giles, DE (2007). Benford's law and naturally occurring prices in certain eBay auctions. Applied Economics Letters 14(3), pp. 157-161. ISSN/ISBN:1350-4851. DOI:10.1080/13504850500425667. | ||||
Hamadeh, N (2004). Wireless Security and Traffic Modeling Using Benford's Law. Master’s Thesis, University of New Mexico, Albuquerque, NM, 2004 (99 pgs). | ||||
Hill, TP (1988). Random-Number Guessing and the First Digit Phenomenon. Psychological Reports 62(3), pp. 967-971. ISSN/ISBN:0033-2941. DOI:10.2466/pr0.1988.62.3.967. | ||||
Hindls, R and Hronová, S (2015). Benford’s Law and Possibilities for Its Use in Governmental Statistics. Statistika 95( 2), pp. 54-64. | ||||
Holz, CA (2013). The Quality of China's GDP Statistics. Munich Personal RePEc Archive Paper No. 51864; available online at http://mpra.ub.uni-muenchen.de/51864/; last accessed June 23, 2014. | ||||
Holz, CA (2014). The quality of China’s GDP statistics. China Economic Review, vol. 30, September 2014, pp. 309–338. DOI:10.1016/j.chieco.2014.06.009. | ||||
Humenberger, H (1996). Das Benford-Gesetz über die Verteilung der ersten Ziffer von Zahlen. Stochastik in der Schule 16(3), pp. 2–17. GER | ||||
Humenberger, H (2000). Das Benford-Gesetz—warum ist die Eins als führende Ziffer von Zahlen bevorzugt?. In: Henn, HW, Förster, F and Meyer, J (eds.), Materialien für einen realitätsbezogenen Mathematikunterricht, Band 6, pp. 138–150. Schriftenreihe der ISTRON-Gruppe, Franzbecker, Hildesheim. GER | ||||
Irmay, S (1997). The relationship between Zipf's law and the distribution of first digits. Journal of Applied Statistics 24(4), pp. 383-393. ISSN/ISBN:0266-4763. DOI:10.1080/02664769723594. | ||||
Jech, T (1992). The Logarithmic Distribution of Leading Digits and Finitely Additive Measures. Discrete Mathematics 108(1-3), pp. 53-57. ISSN/ISBN:0012-365X. DOI:10.1016/0012-365X(92)90659-4. | ||||
Kennard, R and Reith, J (1981). On the distribution of first digits. Communications in Statistics. Simulation and computation 10(1), pp. 97-98. DOI:10.1080/03610918108812195. | ||||
Knuth, DE (1997). The Art of Computer Programming. pp. 253-264, vol. 2, 3rd ed, Addison-Wesley, Reading, MA. | ||||
Lolbert, T (2006). Digital Analysis: Theory and Applications in Auditing. Hungarian Statistical Review 84, Special number 10, p. 148. ISSN/ISBN:0039 0690. | ||||
Lolbert, T (2007). Statisztikai eljárások alkalmazása az ellenőrzésben (Applications of statistical methods in monitoring). PhD thesis, Corvinus University, Budapest, Hungary. HUN | ||||
Martín, AB (2003). Sistematización del proceso de depuración de los datos en estudios con seguimientos. PhD Thesis, Universitat Autònoma de Barcelona, Spain. SPA | ||||
McCarville, D (2021). A data transformation process for using Benford’s Law with bounded data. Preprint [version 1; peer review: awaiting peer review], Emerald Open Research 3(29). DOI:10.35241/emeraldopenres.14374.1. | ||||
Mir, TA and Ausloos, M (2018). Benford's law: a 'sleeping beauty' sleeping in the dirty pages of logarithmic tables. Journal of the Association for Information Science and Technology 69(3) pp. 349–358. DOI:10.1002/asi.23845. | ||||
Nagasaka, K (1984). On Benford's Law. Annals of the Institute of Statistical Mathematics 36(2), pp. 337-352. ISSN/ISBN:0020-3157. DOI:10.1007/BF02481974. | ||||
Nguyen, HT, Kreinovich, V and Longpré, L (2003). Dirty pages of logarithm tables, lifetime of the universe, and subjective (fuzzy) probabilities on finite and infinite intervals. The 12th IEEE International Conference on Fuzzy Systems. FUZZ’03. Fuzzy Systems 1, pp. 67-73. DOI:10.1109/FUZZ.2003.1209339. | ||||
Nguyen, HT, Kreinovich, V and Longpré, L (2004). Dirty Pages of Logarithm Tables, Lifetime of the Universe, and (Subjective) Probabilities on Finite and Innite Intervals. Reliable Computing 10(2), 83-106. DOI:10.1023/B:REOM.0000015848.19449.12. | ||||
Nigrini, MJ (1992). The Detection of Income Tax Evasion Through an Analysis of Digital Frequencies. PhD thesis, University of Cincinnati, OH, USA. | ||||
Nigrini, MJ (1996). Digital Analysis and the Reduction of Auditor Litigation Risk. Proceedings of the 1996 Deloitte & Touche / University of Kansas Symposium on Auditing Problems, ed. M. Ettredge, University of Kansas, Lawrence, KS, pp. 69-81. | ||||
Nigrini, MJ (2011). Forensic Analytics: Methods and Techniques for Forensic Accounting Investigations. John Wiley & Sons: Hoboken, New Jersey; (2nd edition published in 2020, isbn 978-1-119-58576-3). ISSN/ISBN:978-0-470-89046-2. | ||||
Pavlov, AI (1982). On the distribution of fractional parts and Benford’s law. Math. USSR Izvestija 19(1), 65-77. English translation of: Izv. Akad. Nauk SSSR Ser. Mat., 1981, 45(4), 760–774. DOI:10.1070/IM1982v019n01ABEH001411. | ||||
Prudêncio, ARG (2015). Aplicação da Lei de Benford para o controlo das demonstrações financeiras de entidades bancárias [Application of Benford's Law for the control of the financial statements of banking entities]. Masters Thesis, Universidade de Lisboa. Instituto Superior de Economia e Gestão. POR | ||||
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349. | ||||
Robertson, JB, Uppuluri, VRR and Rajagopal, AK (1983). First digit phenomenon and ergodic theory. Journal of Mathematical Analysis and Applications 95(2), pp. 375-378. DOI:10.1016/0022-247X(83)90113-0. | ||||
Rosenkrantz, RD (1977). Benford's Law. Example 3.6.6, pp 67-68, p. 78, p. 215 in: Inference, Method and Decision: Towards a Bayesian Philosophy of Science, Reidel Publishing Company, USA. | ||||
Scheidt, JK and Schelin, CW (1987). Distributions of floating point numbers. Computing 38(4), 315-324. ISSN/ISBN:0010-485X. DOI:10.1007/BF02278709. | ||||
Shao, L and Ma, BQ (2010). Empirical mantissa distributions of pulsars. Astroparticle Physics 33, 255-262. DOI:10.1016/j.astropartphys.2010.02.003. | ||||
Shao, L and Ma, BQ (2010). The significant digit law in statistical physics. Physica A 389, 3109-3116. DOI:10.1016/j.physa.2010.04.021. | ||||
Slepkov, AD, Ironside, KB and DeBattista, D (2013). Benford's Law: Textbook Exercises and Multiple-choice Testbanks. Preprint posted on physics arXiv - submitted 19 November 2013. | ||||
Slepkov, AD, Ironside, KB and DiBattista, D (2015). Benford’s Law: Textbook Exercises and Multiple-Choice Testbanks. PLoS ONE 10(2): e0117972. DOI:10.1371/journal.pone.0117972. | ||||
Tsao, NK (1974). On the Distributions of Significant Digits and Roundoff Errors. Communications of the ACM 17(5), 269-271. ISSN/ISBN:0001-0782. DOI:10.1145/360980.360998. | ||||
Turner, PR (1984). Further Revelations on L.S.D.. IMA Journal of Numerical Analysis 4(2), 225-231. ISSN/ISBN:0272-4979. DOI:10.1093/imanum/4.2.225. | ||||
Volcic, A (1996). The First Digit Problem and Scale-Invariance. In: P. Marcellini, G. Talenti and E. Vesentini (eds), Partial differential equations and applications: collected papers in honor of Carlo Pucci. Marcel Dekker, pp. 329-340 . | ||||
Volcic, A (2020). Uniform distribution, Benford’s law and scale-invariance. Bollettino dell'Unione Matematica Italiana. DOI:10.1007/s40574-020-00245-6. | ||||
Weisstein, EW (2003). Benford's Law. pp 181-182 in: CRC concise encyclopedia of mathematics, Chapman & Hall. | ||||
Weisstein, EW (2009). Benford's Law. MathWorld (A Wolfram Web Resource). |