Cross Reference Up

Whitney, RE (1972). Initial digits for the sequence of primes. American Mathematical Monthly 79(2), pp. 150-152.

This work is cited by the following items of the Benford Online Bibliography:

Note that this list may be incomplete, and is currently being updated. Please check again at a later date.


Allen, DP (1999). A new approach to the first digit phenomenon. The Toth-Maatian Review 14(3), pp. 6839-6847. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Berger, A and Hill, TP (2011). A basic theory of Benford's Law . Probability Surveys 8, pp. 1-126. DOI:10.1214/11-PS175. View Complete Reference Online information Works that this work references Works that reference this work
Cai, Z, Faust, M, Hildebrand, AJ, Li, J and Zhang, Y (2017). Leading Digits of Mersenne Numbers. Preprint in arXiv:1712.04425 [math.NT]; last accessed October 23, 2018. View Complete Reference Online information Works that this work references Works that reference this work
Cai, Z, Faust, M, Hildebrand, AJ, Li, J and Zhang, Y (2021). Leading digits of Mersenne numbers. Experimental Mathematics 30(3), pp. 405–421. DOI:10.1080/10586458.2018.1551162. View Complete Reference Online information Works that this work references Works that reference this work
Caldwell, CK (2008). Does Benford's law apply to prime numbers?. From: The Prime Pages (prime number research, records and resources) FAQ. View Complete Reference Online information Works that this work references Works that reference this work
Chou, MC, Kong, Q, Teo, CP, Wang, Z and Zheng, H (2009). Benford's Law and Number Selection in Fixed-Odds Numbers Game. Journal of Gambling Studies 25(4), pp. 503-521. DOI:10.1007/s10899-009-9145-9. View Complete Reference Online information Works that this work references Works that reference this work
Eliahou, S, Massé, B and Schneider, D (2013). On the mantissa distribution of powers of natural and prime numbers. Acta Mathematica Hungarica, 139(1), pp. 49-63. ISSN/ISBN:0236-5294. DOI:10.1007/s10474-012-0244-1. View Complete Reference Online information Works that this work references Works that reference this work
Giuliano-Antonini, R and Grekos, G (2005). Regular sets and conditional density: an extension of Benford's law. Colloquium Mathematicum, 103(2), pp. 173–192. DOI:10.4064/cm103-2-3. View Complete Reference Online information Works that this work references Works that reference this work
Glunz, H (2022). Significant Digits of Primes in Subsets. Preprint arXiv:2207.07204 [math.NT]; last accessed August 8, 2022. DOI:10.48550/ARXIV.2207.07204. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Glunz, H (2023). Significant Digits of Primes in Subsets. INTEGERS 23. DOI:10.5281/zenodo.8099781. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Goto, K (1992). Some examples of Benford sequences. Mathematical Journal of the Okayama University 34, pp. 225-232. View Complete Reference Online information Works that this work references Works that reference this work
Hüngerbühler, N (2007). Benfords Gesetz über führende Ziffern: Wie die Mathematik Steuersündern das Fürchten lehrt. EDUCETH - Das Bildungsportal der ETH Zürich. GER View Complete Reference Online information Works that this work references Works that reference this work
Hürlimann, W (2003). A generalized Benford law and its application. Advances and Applications in Statistics 3(3), pp. 217-228. View Complete Reference Online information Works that this work references Works that reference this work
Hürlimann, W (2004). Integer powers and Benford’s law. International Journal of Pure and Applied Mathematics 11(1), pp. 39-46. View Complete Reference No online information available Works that this work references Works that reference this work
Hürlimann, W (2009). Generalizing Benford’s law using power laws: application to integer sequences. International Journal of Mathematics and Mathematical Sciences, Article ID 970284. DOI:10.1155/2009/970284. View Complete Reference Online information Works that this work references Works that reference this work
Jameson, M, Thorner, J and Ye, L (2014). Benford's Law for Coefficients of Newforms. arXiv:1407.1577 [math.NT]; posted July 7, 2014; last accessed November 10, 2014. View Complete Reference Online information Works that this work references Works that reference this work
Kanemitsu, S, Nagasaka, K, Rauzy, G and Shiue, JS (1988). On Benford’s law: the first digit problem. Lecture Notes in Mathematics 1299, pp. 158-169 (eds. Watanabe, S, and Prokhorov, YV). ISSN/ISBN:978-3-540-18814-8. DOI:10.1007/BFb0078471. View Complete Reference Online information Works that this work references Works that reference this work
Knopfmacher, J (1981). Initial digits in number theory. Fibonacci Quarterly 19(2), pp. 121-126. View Complete Reference No online information available Works that this work references Works that reference this work
Li, Z, Cong, L and Wang, H (2004). Discussion on Benford’s law and its application. posted on arXiv:math/0408057, Aug 4, 2004. View Complete Reference Online information Works that this work references Works that reference this work
Luque, B and Lacasa, L (2009). The first-digit frequencies of prime numbers and Riemann zeta zeros. Proc. Royal Soc. A, published online 22Apr09. DOI:10.1098/rspa.2009.0126. View Complete Reference Online information Works that this work references Works that reference this work
Massé, B and Schneider, D (2011). A survey on weighted densities and their connection with the first digit phenomenon. Rocky Mountain Journal of Mathematics 41(5), 1395-1415. ISSN/ISBN:0035-7596. DOI:10.1216/RMJ-2011-41-5-1395. View Complete Reference Online information Works that this work references Works that reference this work
Massé, B and Schneider, D (2014). The mantissa distribution of the primorial numbers. Acta Arithmetica 163, pp. 45-58. ISSN/ISBN:0065-1036. DOI:10.4064/aa163-1-4. View Complete Reference Online information Works that this work references Works that reference this work
McLaughlin, WI and Lundy, SA (1984). Digit functions of integer sequences. Fibonacci Quarterly 22(2), pp. 105-115. ISSN/ISBN:0015-0517. View Complete Reference Online information Works that this work references Works that reference this work
Pavlović, V, Knežević, G, Joksimović, M and Joksimović, D (2019). Fraud Detection in Financial Statements Applying Benford's Law with Monte Carlo Simulation. Acta oeconomica 69(2), pp.217-239. DOI:10.1556/032.2019.69.2.4. View Complete Reference Online information Works that this work references Works that reference this work
Pollack, P and Roy, AS (2022). Dirichlet, Sierpiński, and Benford. Journal of Number Theory (pre-proof). DOI:10.1016/j.jnt.2021.12.010. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Posch, PN (2005). Ziffernanalyse in Theorie und Praxis. Testverfahren zur Fälschungsaufspürung mit Benfords Gesetz. Diploma thesis, Universität Bonn, Germany, 2003. Published by Shaker Verlag, Aachen. GER View Complete Reference No online information available Works that this work references Works that reference this work
Posch, PN (2008). A Survey on Sequences and Distribution Functions satisfying the First-Digit-Law. Journal of Statistics & Management Systems 11(1), pp. 1-19. DOI:10.1080/09720510.2008.10701294. View Complete Reference Online information Works that this work references Works that reference this work
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349. View Complete Reference Online information Works that this work references Works that reference this work
Schatte, P (1983). On H -summability and the uniform distribution of sequences. Math. Nachr. 113, 237-243. DOI:10.1002/mana.19831130122. View Complete Reference Online information Works that this work references Works that reference this work
Schatte, P (1988). On mantissa distributions in computing and Benford’s law. Journal of Information Processing and Cybernetics EIK 24(9), 443-455. ISSN/ISBN:0863-0593. View Complete Reference Online information Works that this work references Works that reference this work