Cross Reference Up

Kanemitsu, S, Nagasaka, K, Rauzy, G and Shiue, JS (1988). On Benford’s law: the first digit problem. Lecture Notes in Mathematics 1299, pp. 158-169 (eds. Watanabe, S, and Prokhorov, YV).

This work is cited by the following items of the Benford Online Bibliography:

Note that this list may be incomplete, and is currently being updated. Please check again at a later date.


Berger, A (2015). Most linear flows on ℝ^d are Benford . Journal of Differential Equations 259(5), pp. 1933–1957. DOI:10.1016/j.jde.2015.03.016. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A and Eshun, G (2014). Benford solutions of linear difference equations. Theory and Applications of Difference Equations and Discrete Dynamical Systems, Springer Proceedings in Mathematics & Statistics Volume 102, pp. 23-60. ISSN/ISBN:978-3-662-44139-8. DOI:10.1007/978-3-662-44140-4_2. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A and Eshun, G (2016). A characterization of Benford's law in discrete-time linear systems. Journal of Dynamics and Differential Equations 28(2), pp. 432-469. ISSN/ISBN:1040-7294. DOI:10.1007/s10884-014-9393-y. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A, Hill, TP, Kaynar, B and Ridder, A (2011). Finite-state Markov Chains Obey Benford's Law. SIAM Journal of Matrix Analysis and Applications 32(3), pp. 665-684. DOI:10.1137/100789890. View Complete Reference Online information Works that this work references Works that reference this work
Drmota, M and Tichy, RF (1997). Sequences, Discrepancies and Applications. Lecture Notes in Mathematics 1651. View Complete Reference Online information Works that this work references Works that reference this work
Fisher, AM and Zhang, X (2023). Uniform distribution mod 1 for sequences of ergodic sums and continued fractions. Preprint arXiv:2307.14843 [math.DS]; last accessed August 5, 2023 . View Complete Reference Online information Works that this work references No Bibliography works reference this work
Giuliano-Antonini, R and Grekos, G (2005). Regular sets and conditional density: an extension of Benford's law. Colloquium Mathematicum, 103(2), pp. 173–192. DOI:10.4064/cm103-2-3. View Complete Reference Online information Works that this work references Works that reference this work
Jager, H and Liardet, P (1988). Distribution arithmétiques des dénominateurs de convergents de fractions continues. Nederl. Akad. Wetensch. Indag. Math. 50(2), pp. 181-197. DOI:10.1016/S1385-7258(88)80026-X. FRE View Complete Reference Online information Works that this work references Works that reference this work
Massé, B and Schneider, D (2011). A survey on weighted densities and their connection with the first digit phenomenon. Rocky Mountain Journal of Mathematics 41(5), 1395-1415. ISSN/ISBN:0035-7596. DOI:10.1216/RMJ-2011-41-5-1395. View Complete Reference Online information Works that this work references Works that reference this work
Nagasaka, K (2008). Benford’s Law to Base g of Order r in the Sense of a Certain Density. Short talk at: Colloque international sur la répartition uniforme, Marseille, January 2008. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Nagasaka, K, Kanemitsu, S and Shiue, JS (1990). Benford’s law: The logarithmic law of first digit. In: Győry, K, Halász, G. (eds.) Number theory. Vol. I. Elementary and analytic, Proc. Conf., Budapest/Hung. 1987, Colloq. Math. Soc. János Bolyai 51, pp. 361-391 . View Complete Reference No online information available Works that this work references Works that reference this work
Schatte, P (1988). On mantissa distributions in computing and Benford’s law. Journal of Information Processing and Cybernetics EIK 24(9), 443-455. ISSN/ISBN:0863-0593. View Complete Reference Online information Works that this work references Works that reference this work
Schatte, P (1988). On the uniform distribution of certain sequences and Benford’s law. Math. Nachr. 136, 271-273. DOI:10.1002/mana.19881360119. View Complete Reference Online information Works that this work references Works that reference this work
Schatte, P (1990). On Benford’s law for continued fractions. Math. Nachr. 148, 137-144. DOI:10.1002/mana.3211480108. View Complete Reference Online information Works that this work references Works that reference this work