This work is cited by the following items of the Benford Online Bibliography:
Ausloos, M, Ficcadenti, V, Dhesi, G and Shakeel, M (2021). Benford’s laws tests on S&P500 daily closing values and the corresponding daily log-returns both point to huge non-conformity. Physica A: Statistical Mechanics and its Applications 574, pp. 125969. DOI:10.1016/j.physa.2021.125969. | ||||
Ausloos, M, Ficcadenti, V, Dhesi, G and Shakeel, M (2021). Benford's laws tests on S&P500 daily closing values and the corresponding daily log-returns both point to huge non-conformity. Preprint arXiv:2104.07962 [q-fin.ST]; last accessed April 30, 2021. To appear in: Physica A: Statistical Mechanics and its Applications, 574. DOI:10.1016/j.physa.2021.125969. | ||||
Becker, T, Burt, D, Corcoran, TC, Greaves-Tunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J, Strauch, FW and Talbut, B (2018). Benford's Law and Continuous Dependent Random Variables. Annals of Physics 388, pp. 350–381. DOI:10.1016/j.aop.2017.11.013. | ||||
Becker, T, Corcoran, TC, Greaves-Tunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J and Strauch, FW (2013). Benford's Law and Continuous Dependent Random Variables. Preprint arXiv:1309.5603 [math.PR]; last accessed October 23, 2018. DOI:10.1016/j.aop.2017.11.013. | ||||
Blondeau da Silva, S (2019). BeyondBenford: An R Package to Determine Which of Benford’s or BDS’s Distributions is the Most Relevant. Preprint hal-02310013; also posted on arXiv:1910.06104 [physics.soc-ph]; last accessed October 21, 2019. | ||||
Blondeau Da Silva, S (2020). Limits of Benford’s Law in Experimental Field. International Journal of Applied Mathematics 33(4), pp. 685-695. DOI:10.12732/ijam.v33i4.12. | ||||
Buttorff, G (2008). Detecting fraud in America's gilded age. Working Paper No. 2, University of Iowa, Cal Tech/MIT Voting Technology Project. | ||||
Cantu, F and Saiegh, SM (2011). Fraudulent Democracy? An Analysis of Argentina’s Infamous Decade Using Supervised Machine Learning. Political Analysis 19 (4), pp. 409-433. DOI:10.1093/pan/mpr033. | ||||
Chenavier, N, Massé, B and Schneider, D (2018). Products of random variables and the first digit phenomenon. Preprint arXiv:1512.06049 [math.PR]; last accessed January 9, 2019. | ||||
Coeurjolly, J-F (2020). Digit analysis for Covid-19 reported data . Preprint arXiv:2005.05009 [stat.AP]; last accessed May 17, 2020. | ||||
Corazza, M, Ellero, A and Zorzi, A (2010). Checking financial markets via Benford's law: the S&P 500 case. In: Corazza, M and Pizzi, C (Eds.): Mathematical and Statistical Methods for Actuarial Sciences and Finance, Springer, pp. 93-102. DOI:10.1007/978-88-470-1481-7_10. | ||||
da Cunha, FCR (2013). Aplicações da lei Newcomb-Benford à auditoria de obras públicas [Applications of the Newcomb-Benford Law on Audit of Public Works]. Masters Thesis, University of Brasilia. POR | ||||
Deckert, J, Myagkov, M and Ordeshook, PC (2010). The Irrelevance of Benford's Law for Detecting Fraud in Elections. CALTECH working paper 9. | ||||
Deckert, J, Myagkov, M and Ordeshook, PC (2011). Benford's Law and the Detection of Election Fraud. Political Analysis 19(3), pp. 245-268. DOI:10.1093/pan/mpr014. | ||||
Deleanu, IS (2017). Do Countries Consistently Engage in Misinforming the International Community about Their Efforts to Combat Money Laundering? Evidence Using Benford's Law. PLoS One 12(1), p. e0169632. DOI:10.1371/journal.pone.0169632. | ||||
Dorrestijn, J (2008). Graphing conformity of distributions to Benford’s Law for various bases. MSc thesis, Universiteit Utrecht, The Netherlands. | ||||
Eliazar, II (2013). Benford's Law: A Poisson Perspective. Physica A 392(16) pp. 3360–3373. DOI:10.1016/j.physa.2013.03.057. | ||||
Formann, AK (2010). The Newcomb-Benford Law in Its Relation to Some Common Distributions. PLoS ONE 5(5): e10541. DOI:10.1371/journal.pone.0010541. | ||||
Gauvrit, N and Delahaye, J-P (2009). Scatter and regularity imply Benford's Law ... and more. Preprint arXiv: 0910.1359 [math.PR]; last accessed July 18, 2018 . | ||||
Gauvrit, N and Delahaye, J-P (2009). Loi de Benford générale (General Benford Law). Mathématiques et sciences humaines/ Mathematics and Social Sciences 186, pp. 5–15. FRE | ||||
Gauvrit, N and Delahaye, J-P (2011). Scatter and Regularity Implies Benford's Law... and More. in H. Zenil (Ed.) Randomness Through Complexity, Singapore, World Scientific, 53-69. ISSN/ISBN:13978-981-4327-74-9. | ||||
Genest, V and Genest, C (2011). La loi de Newcomb-Benford ou la loi du premier chiffre significatif. Bulletin Association Mathématique du Québec, Vol. LI, no 2, pp. 22-39. FRE | ||||
Giuliano, R and Janvresse, E (2010). A unifying probabilistic interpretation of Benford's Law. Uniform Distribution Theory 5(2), pp. 169-182. ISSN/ISBN:1336-913X. | ||||
Gonzalez-Garcia, J and Pastor, G (2009). Benford’s Law and Macroeconomic Data Quality. International Monetary Fund Working Paper WP/09/10, Statistics Department, January 2009. | ||||
Guha, D, Mahapatra, PK, Misra, RP and Singh, Y (2020). Exploring the Applicability of Benford’s Law in Data Quality Management. Unpublished manuscript. | ||||
Henselmann, K, Ditter, D and Scherr, E (2014). Irregularities in Accounting Numbers and Earnings Management - A Novel Approach Based on SEC XBRL Filings . 22nd Annual Research Workshop on Strategic and Emerging Technologies in Accounting, Auditing, and Tax, AAA Annual Meeting 2013, Anaheim, USA. | ||||
Henselmann, K, Ditter, D and Scherr, E (2015). Irregularities in accounting numbers and earnings management - A novel approach based on SEC XBRL filings. Journal of Emerging Technologies in Accounting 12 (1), pp. 117–151. DOI:10.2308/jeta-51247. | ||||
Hürlimann, W (2004). Integer powers and Benford’s law. International Journal of Pure and Applied Mathematics 11(1), pp. 39-46. | ||||
Hürlimann, W (2009). Generalizing Benford’s law using power laws: application to integer sequences. International Journal of Mathematics and Mathematical Sciences, Article ID 970284. DOI:10.1155/2009/970284. | ||||
Janvresse, E (2009). Quel est le début de ce nombre?. Images des Mathématiques, 26 December. FRE | ||||
Janvresse, É (2012). Quelques contributions aux probabilités eta la théorie ergodique. Document de synthèse présenté pour l’Habilitation à Diriger des Recherches, l’université de Rouen. FRE | ||||
Janvresse, É and de la Rue, T (2012). Averaging along Uniform Random Integers. Uniform Distribution Theory 7(2), pp. 35–60. | ||||
Jasak, Z (2010). Benfordov zakon i reinforcement učenje (Benford's Law and reinforcment learning) . MSc Thesis, University of Tuzla, Bosnia. SRP | ||||
Jošić , H and Žmuk, B (2020). The Application of the Law of Anomalous Numbers on Global Food Prices in Examining Psychological Pricing Strategies. Journal of International Food & Agribusiness Marketing, pp. 1-16. DOI:10.1080/08974438.2020.1796880 . | ||||
Massé, B and Schneider, D (2011). A survey on weighted densities and their connection with the first digit phenomenon. Rocky Mountain Journal of Mathematics 41(5), 1395-1415. ISSN/ISBN:0035-7596. DOI:10.1216/RMJ-2011-41-5-1395. | ||||
Mebane, WR Jr (2006). Detecting Attempted Election Theft: Vote Counts, Voting Machines and Benford’s Law. Paper prepared for the 2006 Annual Meeting of the Midwest Political Science Association, Chicago, IL. | ||||
Mebane, WR Jr (2006). Election Forensics: Vote Counts and Benford’s Law. Proceedings of the Summer Meeting of the Political Methodology Society, UC-Davis, July, pp. 20-22. | ||||
Mebane, WR Jr (2007). Election Forensics: Statistics, Recounts and Fraud. Presented at the 2007 Annual Meeting of the Midwest Political Science Association, Chicago, IL, April 12–16. | ||||
Mebane, WR Jr (2010). Election Fraud or Strategic Voting? Can Second-digit Tests Tell the Difference?. Prepared for Presentation at the 2010 Summer Meeting of the Political Methodology Society. University of Iowa. | ||||
Mebane, WR Jr (2012). Second-digit Tests for Voters’ Election Strategies and Election Fraud. Prepared for presentation at the 2012 Annual Meeting of the Midwest Political Science Association, Chicago, April 12–15; last accessed Apr 11, 2019. | ||||
Mebane, WR Jr (2013). Election Forensics: The Meanings of Precinct Vote Counts’ Second Digits. Prepared for presentation at the 2013 Summer Meeting of the Political Methodology Society, University of Virginia, July 18–20. | ||||
Michalski, T and Stoltz, G (2013). Do Countries Falsify Economic Data Strategically? Some Evidence That They Might. The Review of Economics and Statistics, Vol. 95, No. 2, pp. 591-616. DOI:10.1162/REST_a_00274. | ||||
Miller, SJ (2016). Can math detect fraud? CSI: Math: The natural behavior of numbers. Presentation at Science Cafe, Northampton, September 26; last accessed July 4, 2019. | ||||
Miller, SJ and Nigrini, MJ (2008). The Modulo 1 Central Limit Theorem and Benford's Law for Products. International Journal of Algebra 2(3), pp. 119 - 130. | ||||
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1. | ||||
Ollén, ER and Wennberg, J (2021). Assessing practicalities of Benford's Law: A study of the law's potential to detect fraud in transactional data. Bachelor thesis, Dept. of Economics, Lund University. | ||||
Pollach, G, Brunkhorst, F, Mipando, M, Namboya, F, Mndolo, S and Luiz, T (2016). The "first digit law" - A hypothesis on its possible impact on medicine and development aid. Medical Hypotheses 97, pp. 102-106. DOI:10.1016/j.mehy.2016.10.021. | ||||
Regan, KW (2012). Benford’s Law and Baseball. Gödel’s Lost Letter and P=NP website, last accessed April 1, 2019. | ||||
Shikano, S and Mack, V (2011). When does 2nd Digit Benford´s Law-Test signal an election fraud? Facts or misleading test results. Jahrbücher für Nationalökonomie und Statistik 231 (5+6), 719-732. | ||||
Valadier, M (2012). The Benford phenomenon for random variables. Discussion of Feller's way. Math arXiv:1203.2518; posted 19 Apr 2012. | ||||
Wolff, H and Auffhammer, M (2006). Endogenous Choice OF Development Indicators: Are Development Countries Misclassified? Evidence from the HDI. Agricultural and Resource Economics, UC Berkeley, USA. |