Agyemang, EF, Mensah, JA and Nyarko, E (2023). How dependable is World Continental COVID-19 data? Disclosure of Inconsistencies in Daily Reportage Confirmed Cases, Recovered and Deaths During First Wave. Preprint – submitted to Heliyon. DOI:10.2139/ssrn.4516032.
|
|
|
|
|
Carmo, CRS, Nunes, FC and Caneppele, FdL (2023). The limits of conformity analysis under the Newcomb-Benford law and the COVID-19 pandemic in Brazil
. Brazilian Journal of Biometrics 41, pp. 234-248 . DOI:10.28951/bjb.v41i3.626.
|
|
|
|
|
Filho, DF, Silva, L and Medeiros, H (2022). “Won’t get fooled again”: statistical fault detection in COVID-19 Latin American data. Globalization and Health 18, pp.105. DOI:10.1186/s12992-022-00899-1.
|
|
|
|
|
Filho, TMR, Mendes, JFF, Lucio, ML and Moret, MA (2022). Reliability of COVID-19 data and government policies. Preprint arXiv:2208.11226 [physics.soc-ph]; last accessed August 31, 2022.
|
|
|
|
|
Filho, TMR, Mendes, JFF, Lucio, ML and Moret, MA (2023). COVID-19 data, mitigation policies and Newcomb–Benford law. Chaos, Solitons and Fractals 174 p. 113814. DOI:10.1016/j.chaos.2023.113814.
|
|
|
|
|
Parreño, SJE (2023). Assessing the quality of dengue data in the Philippines using Newcomb-Benford law. Sapienza: International Journal of Interdisciplinary Studies 4(3). DOI:10.51798/sijis.v4i3.662.
|
|
|
|
|
Păunescu, M, Nichita, E-M, Lazăr, P and Frățilă, A (2023). Applying Benford’s Law to Detect Fraud in the Insurance Industry—A Case Study from the Romanian Market. Proceedings of Fostering Recovery Through Metaverse Business Modelling. DOI:10.1007/978-3-031-28255-3_4.
|
|
|
|
|
Silva, LEdO and Figueiredo, D (2024). A novel approach to evaluate data integrity: evidence from COVID-19 in China. Brazilian Journal of Biometrics 42(1), pp. 78-87. DOI:10.28951/bjb.v42i1.659.
|
|
|
|
|