Jager, H and Liardet, P (1988). Distribution arithmétiques des dénominateurs de convergents de fractions continues. Nederl. Akad. Wetensch. Indag. Math. 50(2), pp. 181-197. FRE
This work is cited by the following items of the Benford Online Bibliography:
Note that this list may be incomplete, and is currently being updated. Please check again at a later date.
Drmota, M and Tichy, RF (1997). Sequences, Discrepancies and Applications. Lecture Notes in Mathematics 1651.
|
|
|
|
|
Fisher, AM and Zhang, X (2023). Uniform distribution mod 1 for sequences of ergodic sums and continued fractions. Preprint arXiv:2307.14843 [math.DS]; last accessed August 5, 2023
.
|
|
|
|
|
Nagasaka, K, Kanemitsu, S and Shiue, JS (1990). Benford’s law: The logarithmic law of first digit. In: Győry, K, Halász, G. (eds.) Number theory. Vol. I. Elementary and analytic, Proc. Conf., Budapest/Hung. 1987, Colloq. Math. Soc. János Bolyai 51, pp. 361-391 .
|
|
|
|
|
Patterson, C and Scheepers, M (2024). Benford's Law in the ring ℤ(√ D). Preprint arXiv: 2402.10864[math.NT]; last accessed May 13, 2024.
|
|
|
|
|
Schatte, P (1990). On Benford’s law for continued fractions. Math. Nachr. 148, 137-144. DOI:10.1002/mana.3211480108.
|
|
|
|
|