Ali, A and Haque, S (2022). Application of Benford’s law to COVID19 cases in selected countries of the Caribbean and globally. Caribbean Medical Journal. ISSN/ISBN:26645599.





Anab, F, Khaliq, A and Younas, I (2021). A Statistical Analysis of Covid19 Data of Pakistan by Applying Benford’s Law. Journal of Applied Pharmacy 13, pp. 5560.





Balashov, VS, Yan, Y and Zhu, X (2021). Using the Newcomb–Benford law to study the association between a country’s COVID19 reporting accuracy and its development. Scientific Reports 11, pp. 22914. DOI:10.1038/s4159802102367z.





Campanelli, L (2022). On the Euclidean distance statistic of Benford’s law. Communications in Statistics  Theory and Methods, pp. 124. DOI:10.1080/03610926.2022.2082480}.





Campanelli, L (2022). Testing Benford's Law: from small to very large data sets. Preprint submitted to Spanish Journal of Statistics. DOI:10.13140/RG.2.2.19884.95363.





Campanelli, L (2022). Breaking Benford’s law: A statistical analysis of Covid19 data using the Euclidean distance statistic. Preprint submitted to Statistics in Transition.





Campanelli, L (2022). Monkeypox Obeys the (Benford's) Law: A Dynamic Analysis of Daily Case Counts in the United States of America. Preprint submitted to Statistics in Tran
sition new series..





Campanelli, L (2022). Tuning up the KolmogorovSmirnov test for testing Benford’s law. Preprint on ResearchGate.





Chatterjee, S, Sarkar, A, Karmakar, M, Chatterjee, S and Paul, R (2020). EIRD model to study the asymptomatic growth during COVID19 pandemic in India. Indian Journal of Physics. DOI:10.1007/s12648020019288.





D'Alessandro, A (2020). Benford's law and metabolomics: A tale of numbers and blood. Transfusion and Apheresis Science 59(6), pp. 103019. DOI:10.1016/j.transci.2020.103019.





Farhadi, N (2021). Can we rely on COVID19 data? An assessment of data from over 200 countries worldwide. Science Progress 104(2). DOI:10.1177/00368504211021232.





Farhadi, N and Lahooti, H (2021). Are COVID19 Data Reliable? A Quantitative Analysis of Pandemic Data from 182 Countries. COVID 1, pp. 137–152. DOI:10.3390/covid1010013.





Farhadi, N and Lahooti, H (2021). Pandemic Growth and Benfordness: Empirical Evidence from 176 Countries Worldwide. COVID 1(1), pp. 366383. DOI:10.3390/covid1010031.





Farhadi, N and Lahooti, H (2022). Forensic Analysis of COVID19 Data from 198 Countries Two Years after the Pandemic Outbreak. COVID 2(4), pp. 472484. DOI:10.3390/covid2040034.





Farhadi, N and Lahooti, H (2022). In Data We Trust: Proving Market Manipulation on the Tehran Stock Exchange. International Journal of Business and Management 17(4). DOI:10.5539/ijbm.v17n4p1.





Ileanu, BV (2021). Time Lag Evidence of AntiAbortion Decree and Perturbation of Births Distribution. A Benford Law Approach. Preprint arXiv:2106.15520 [physics.socph]; last accessed July 30, 2021.





Kazemitabar, J (2021). DoubleCrossing Benford's Law. Preprint arXiv:2105.09812 [stat.AP]; last accessed May 31, 2021.





Koesters, N, McMenemy, A and Bélanger, Y (2020). Simulating Epidemics with a SIRD Model and Testing with Benford’s Law. Preprint.





Novosel, D, Žunac, R and Alanović, M (2021). COVID19 and Seasonal Flu Data Reliability Analysis of New Cases Reported in Croatia. Acta Scientific Medical Sciences 5(6), pp. 102105. ISSN/ISBN:25820931.





Pröger, L, Griesberger, P, Hackländer, K, Brunner, N and Kühleitner, M (2021). Benford’s Law for Telemetry Data of Wildlife. Stats 4(4), pp. 943–949. DOI:10.3390/ stats4040055.





Rubin, AE (2021). Benford’s law: Applications to ordinarychondrite mass distributions. Meteoritics & Planetary Science, pp. 114. DOI:10.1111/maps.13626.





Szabo, JK, Forti, LR and Callaghan, CT (2023). Large biodiversity datasets conform to Benford's law: Implications for assessing sampling heterogeneity. Biological Conservation 280, pp. 109982. DOI:10.1016/j.biocon.2023.109982.





Us, D (2021). Benford's Law: An Empirical Analysis of Reported Covid19 Cases and Institutional Structures Around the Globe
. Undergraduate Thesis, Università commerciale Luigi Bocconi, Milan. DOI:10.13140/RG.2.2.28839.88488.





Wang, D, Chen, F, Mao, J, Liu, N and Rong, F (2022). Are the official national data credible? Empirical evidence from statistics quality evaluation of China's coal and its downstream industries
. Energy Economics, p. 106310. DOI:10.1016/j.eneco.2022.106310.





Wei, A and Vellwock, AE (2020). Is COVID19 data reliable? A statistical analysis with Benford's Law. Preprint, posted September. DOI:10.13140/RG.2.2.31321.75365/1.




