This work is cited by the following items of the Benford Online Bibliography:

Azevedo, CdS, Gonçalves, RF, Gava, VL and Spinola, MdM (2021). A Benford’s Law based methodology for fraud detection in social welfare programs: Bolsa Familia analysis. Physica A 567, p. 125626. DOI:10.1016/j.physa.2020.125626. | ||||

Barabesi, L, Cerasa, A, Cerioli, A and Perotta, D (2021). A combined test of the Benford Hypothesis With Anti-fraud Applications. Proceedings of 13th Scientific Meeting of the Classification and Data Analysis Group, Florence, September 9-11. STAMPA, pp. 256-259. DOI:10.36253/978-88-5518-340-6. | ||||

Barabesi, L, Cerasa, A, Cerioli, A and Perrotta, D (2021). On characterizations and tests of Benford’s law. Journal of the American Statistical Association. DOI:10.1080/01621459.2021.1891927. | ||||

Barabesi, L, Cerioli, A and Perrotta, D (2021). Forum on Benford’s law and statistical methods for the detection of frauds. Statistical Methods & Applications 30, pp. 767–778. DOI:10.1007/s10260-021-00588-0. | ||||

Barabesi, L and Pratelli, L (2020). On the Generalized Benford law. Statistics & Probability Letters 160, 108702 . DOI:10.1016/j.spl.2020.108702. | ||||

Cerasa, A (2022). Testing for Benford’s Law in very small samples: Simulation study and a new test proposal. PLoS ONE 17(7), pp. e0271969. DOI:10.1371/journal.pone.0271969. | ||||

Cerioli, A, Barabesi, L, Cerasa, A and Perrotta, D (2022). Who is afraid of the probability-savvy fraudster?. Conference presentation at MBC2 2022 Models and Learning for Clustering and Classification 6th International Workshop, Catania. | ||||

Chen, T and Tsourakakis, CE (2022). AntiBenford Subgraphs: Unsupervised Anomaly Detection in Financial Networks. Preprint arXiv:2205.13426 [cs.; last accessed June 9, 2022. | ||||

D'Alessandro, A (2020). Benford's law and metabolomics: A tale of numbers and blood. Transfusion and Apheresis Science 59(6), pp. 103019. DOI:10.1016/j.transci.2020.103019. | ||||

Ducharme, RG, Kaci, S and Vovor-Dassu ,C (2020). Smooths Tests of Goodness-of-fit for the Newcomb-Benford distribution. Preprint: arXiv:2003.00520v1 [math.ST]. FRE | ||||

Ensminger, J and Leder-Luis, J (2022). Measuring Strategic Data Manipulation: Evidence from a World Bank Project. Preprint, submitted for publication. | ||||

Ensminger, J and Leder-Luis, J (2022). Detecting Fraud in Development Aid. Preprint. | ||||

Filho, DF, Silva, L and Medeiros, H (2022). “Won’t get fooled again”: statistical fault detection in COVID-19 Latin American data. Globalization and Health 18, pp.105. DOI:10.1186/s12992-022-00899-1. | ||||

Kalameyets, M, Levshun, D, Soloviev, S, Chechulin, A and Kotenko, I (2020). Social networks bot detection using Benford’s law. SIN 2020: 13th International Conference on Security of Information and Networks, Article No.: 19. pp. 1–8. DOI:10.1145/3433174.3433589. | ||||

Kennedy, AP and Yam, SCP (2020). On the authenticity of COVID-19 case figures. PLoS ONE 15(12): e0243123. DOI:10.1371/journal.pone.0243123. | ||||

Lacasa, L (2019). Newcomb–Benford law helps customs officers to detect fraud in international trade. Proceedings of the National Academy of Sciences 116(1), pp. 11-13. DOI:10.1073/pnas.1819470116. | ||||

Martínez JW, Martínez JC, Rincón DA, Salazar, DA, Castrillón JD, Gómez MDP, Suárez OF, Vélez JP, Valencia ÁM, Gómez S, Rincón ÁM, Idrovo ÁJ, Moreno-Montoya J, Prieto-Alvarado FE, Hurtado-Ortiz A and (2020). Benchmarking of public health surveillance of COVID-19 in Colombia: First semester. Biomedica : Revista del Instituto Nacional de Salud 40(Supl. 2), pp. 198-204. SPA | ||||

Morag, S and Salmon-Divon, M (2019). Characterizing Human Cell Types and Tissue Origin Using the Benford Law. Cells 8(9), p. 1004. DOI:10.3390/cells8091004. | ||||

Moreau, VH (2021). Inconsistencies in Countries COVID-19 Data Revealed by Benford’s Law’. Model Assisted Statistics and Applications 16(1), pp. 73-79. DOI:10.3233/MAS-210517. | ||||

Morillas-Jurado, FG, Caballer-Tarazona, M and Caballer-Tarazona, V (2022). Applying Benford’s Law to Monitor Death Registration Data: A Management Tool for the COVID-19 Pandemic. Mathematics 10(1), 46. DOI:10.3390/math10010046. | ||||

Mumic, N and Filzmoser, P (2021). A multivariate test for detecting fraud based on Benford’s law, with application to music streaming data. Statistical Methods & Applications. DOI:10.1007/s10260-021-00582-6. | ||||

Perrotta, D, Cerasa, A, Barabesi, L and Menegatti, M (2019). Contamination And Manipulation Of Trade Data: The Two Faces Of Customs Fraud . Book of Short Papers, Proceedings of the 12th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society (SIS), pp. 394-397. | ||||

Renaldo, N, Hutahuruk, MB and Putri, IY (2022). Forensic Accounting: The Use of Benford's Law to Evaluate Indications of Fraud . Revista Eletrônica do Departamento de Ciências Contábeis & Departamento de Atuária e Métodos Quantitativos (REDECA) 9(e57343), pp. 1-15. DOI:10.23925/2446-9513.2022v9id57343. | ||||

Wang, L and Bo-Qiang, M (2023). A concise proof of Benford’s law. Fundamental Research . DOI:10.1016/j.fmre.2023.01.002. | ||||

Zhang, J (2020). Testing Case Number of Coronavirus Disease 2019 in China with Newcomb-Benford Law. Preprint arXiv:2002.05695 [physics.soc-ph]; last accessed February 18, 2020. |