This work is cited by the following items of the Benford Online Bibliography:
Adhikari, AK (1969). Some Results on Distribution of Most Significant Digit. Sankhya-The Indian Journal of Statistics Series B, 31 (Dec), pp. 413-420. ISSN/ISBN:0581-5738. | ||||
Adhikari, AK and Sarkar, BP (1968). Distribution of most significant digit in certain functions whose arguments are random variables. Sankhya-The Indian Journal of Statistics Series B, no. 30, pp. 47-58. ISSN/ISBN:0581-5738. | ||||
Allen, DP (1999). A new approach to the first digit phenomenon. The Toth-Maatian Review 14(3), pp. 6839-6847. | ||||
Berger, A and Hill, TP (2011). A basic theory of Benford's Law . Probability Surveys 8, pp. 1-126. DOI:10.1214/11-PS175. | ||||
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062. | ||||
Blondeau Da Silva, S (2020). Limits of Benford’s Law in Experimental Field. International Journal of Applied Mathematics 33(4), pp. 685-695. DOI:10.12732/ijam.v33i4.12. | ||||
Brady, WG (1978). More on Benford’s law. Fibonacci Quarterly 16(1), pp. 51-52. | ||||
Burgos, A and Santos, A (2021). The Newcomb–Benford law: Scale invariance and a simple Markov process based on it (Previous title: The Newcomb–Benford law: Do physicists use more frequently the key 1 than the key 9?). Preprint arXiv:2101.12068 [physics.pop-ph]; last accessed August 8, 2022; Published Am. J. Phys. 89, pp. 851-861. | ||||
Burke, J and Kincanon, E (1991). Benford's Law and Physical Constants - The Distribution of Initial Digits. American Journal of Physics 59 (10), p. 952. ISSN/ISBN:0002-9505. DOI:10.1119/1.16838. | ||||
Caldwell, CK (2008). Does Benford's law apply to prime numbers?. From: The Prime Pages (prime number research, records and resources) FAQ. | ||||
Ciofalo, M (2009). Entropy, Benford’s first digit law, and the distribution of everything. Unpublished manuscript. | ||||
Clenshaw, CV, Olver, FWJ and Turner, PR (1989). Level-Index Arithmetic - An Introductory Survey. Lecture Notes in Mathematics 1397, pp. 95-168. ISSN/ISBN:0075-8434. DOI:10.1007/BFb0085718. | ||||
Cohen, DIA (1976). An Explanation of the First Digit Phenomenon. Journal of Combinatorial Theory Series A 20(3), pp. 367-370. ISSN/ISBN:0097-3165. | ||||
Davis, B (1976). Some Remarks on Initial Digits. Fibonacci Quarterly 14(1), pp. 13-14. ISSN/ISBN:0015-0517. | ||||
Diaconis, P (1977). Examples of the theory of infinite iteration of summability methods. Canadian Journal of Mathematics 29(3), pp. 489-497. DOI:10.4153/CJM-1977-053-1. | ||||
Diaconis, P (2002). G.H. Hardy and Probability ???. Bulletin of the London Mathematical Society 34(4), pp. 385-402. DOI:10.1112/S002460930200111X. | ||||
Drmota, M and Tichy, RF (1997). Sequences, Discrepancies and Applications. Lecture Notes in Mathematics 1651. | ||||
Duncan, RL (1969). Note on the initial digit problem. Fibonacci Quarterly 7(5), pp. 474-475. | ||||
Filipponi, P and Menicocci, R (1995). Some Probabilistic Aspects of the Terminal Digits of Fibonacci Numbers. Fibonacci Quarterly 33(4), pp. 325-331. ISSN/ISBN:0015-0517. | ||||
Forster, RP (2006). Auditoria contábil em entidades do terceiro setor : uma aplicação da Lei Newcomb-Benford. Universidade de Brasília, Brasília. POR | ||||
Fuchs, A and Nanopoulos, P (1985). Mesures invariantes par translation, classes de Dynkin first-digit problem. Advances in Mathematics 55, pp. 24-74. DOI:10.1016/0001-8708(85)90004-0. FRE | ||||
Giuliano, R and Janvresse, E (2010). A unifying probabilistic interpretation of Benford's Law. Uniform Distribution Theory 5(2), pp. 169-182. ISSN/ISBN:1336-913X. | ||||
Hamadeh, N (2004). Wireless Security and Traffic Modeling Using Benford's Law. Master’s Thesis, University of New Mexico, Albuquerque, NM, 2004 (99 pgs). | ||||
Hill, TP (1988). Random-Number Guessing and the First Digit Phenomenon. Psychological Reports 62(3), pp. 967-971. ISSN/ISBN:0033-2941. DOI:10.2466/pr0.1988.62.3.967. | ||||
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. | ||||
Hill, TP (1995). Base-Invariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887-895. ISSN/ISBN:0002-9939. DOI:10.2307/2160815. | ||||
Hill, TP (2001). Response to "Benfords Gesetz", Brief an die Herausgeber. Mitteilungen der Deutschen Mathematiker Vereinigung, 3/2001, p 4. GER | ||||
Hobza, T and Vajda, I (2001). On the Newcomb-Benford law in models of statistical data. Revista Matematica Complutense XIV(2), pp. 407-420. ISSN/ISBN:1139-1138. | ||||
Huber, H (2023). Explanations of Benford’s Law. Undergraduate research paper, William and Mary. | ||||
Humenberger, H (1996). Das Benford-Gesetz über die Verteilung der ersten Ziffer von Zahlen. Stochastik in der Schule 16(3), pp. 2–17. GER | ||||
Humenberger, H (1997). Eine Ergänzung zum Benford-Gesetz — weitere mögliche schulrelevante Aspekte. Stochastik in der Schule 17(3), pp. 42–48. GER | ||||
Irmay, S (1997). The relationship between Zipf's law and the distribution of first digits. Journal of Applied Statistics 24(4), pp. 383-393. ISSN/ISBN:0266-4763. DOI:10.1080/02664769723594. | ||||
Janvresse, E (2009). Quel est le début de ce nombre?. Images des Mathématiques, 26 December. FRE | ||||
Janvresse, É (2012). Quelques contributions aux probabilités eta la théorie ergodique. Document de synthèse présenté pour l’Habilitation à Diriger des Recherches, l’université de Rouen. FRE | ||||
Janvresse, E and De la Rue, T (2003). La loi de Benford. Quadature no. 48, pp. 5-9. FRE | ||||
Janvresse, E and de la Rue, T (2004). From Uniform Distributions to Benford’s Law. Journal of Applied Probability 41(4), pp. 1203-1210. ISSN/ISBN:0021-9002. | ||||
Janvresse, É and de la Rue, T (2009). Benford’s law. (Catalan. Catalan summary). Butl. Soc. Catalana Mat., 24(1):5{12, 2009. Translated by Frederic Utzet. DOI:10.2436/20.2002.01.18. CAT | ||||
Janvresse, É and de la Rue, T (2012). Averaging along Uniform Random Integers. Uniform Distribution Theory 7(2), pp. 35–60. | ||||
Jasak, Z (2010). Benfordov zakon i reinforcement učenje (Benford's Law and reinforcment learning) . MSc Thesis, University of Tuzla, Bosnia. SRP | ||||
Jasak, Z (2017). Sum invariance testing and some new properties of Benford's law. Doctorial Dissertation, University of Tuzla, Bosnia and Herzegovina. | ||||
Jech, T (1992). The Logarithmic Distribution of Leading Digits and Finitely Additive Measures. Discrete Mathematics 108(1-3), pp. 53-57. ISSN/ISBN:0012-365X. DOI:10.1016/0012-365X(92)90659-4. | ||||
Kak, SC (1983). Strings of first digits of powers of a number. Indian J. Pure Appl. Math. 14(7), pp. 896-907. | ||||
Kim, PN, Contreras, J, Ceberio, M and Thach, NN (2023). Economic and Financial Applications of Benford’s Law: from Traditional Use in Audits to Help in Deep Learning. International Journal of Uncertainty,Fuzziness and Knowledge-Based Systems 31(Supp02), pp. 197–207 . DOI:10.1142/S0218488523400111 . | ||||
Knuth, DE (1997). The Art of Computer Programming. pp. 253-264, vol. 2, 3rd ed, Addison-Wesley, Reading, MA. | ||||
Kossovsky, AE (2006). Towards a Better Understanding of the Leading Digits Phenomena. posted December 21, 2006 on arXiv:math/0612627. | ||||
Kossovsky, AE (2012). Statistician's New Role as a Detective - Testing Data for Fraud. Ciencias Económicas 30(2), pp. 179-200 . ISSN/ISBN:0252-9521. | ||||
Kossovsky, AE (2014). Benford's Law: Theory, the General Law of Relative Quantities, and Forensic Fraud Detection Applications. World Scientific Publishing Company: Singapore. ISSN/ISBN:978-981-4583-68-8. | ||||
Kozlov, VV (2005). Weighted averages, uniform distribution, and strict ergodicity. Russian Mathematical Surveys 60(6), pp. 1121-1146. ISSN/ISBN:0036-0279. DOI:10.1070/RM2005v060n06ABEH004284. | ||||
Lemons, DS (1986). On the Numbers of Things and the Distribution of first Digits. American Journal of Physics 54(9), pp. 816-817. ISSN/ISBN:0002-9505. DOI:10.1119/1.14453. | ||||
Lipovetsky, S (2008). Comparison among different patterns of priority vectors estimation methods. International Journal of Mathematical Education in Science 39(3), pp. 301-311. DOI:10.1080/00207390701639532. | ||||
Logan, JL and Goudsmit, SA (1978). The First Digit Phenomenon. Proceedings of the American Philosophical Society 122(4), pp. 193-197. ISSN/ISBN:0003-049X. | ||||
Lolbert, T (2006). Digital Analysis: Theory and Applications in Auditing. Hungarian Statistical Review 84, Special number 10, p. 148. ISSN/ISBN:0039 0690. | ||||
Lolbert, T (2007). Statisztikai eljárások alkalmazása az ellenőrzésben (Applications of statistical methods in monitoring). PhD thesis, Corvinus University, Budapest, Hungary. HUN | ||||
Luque, B and Lacasa, L (2009). The first-digit frequencies of prime numbers and Riemann zeta zeros. Proc. Royal Soc. A, published online 22Apr09. DOI:10.1098/rspa.2009.0126. | ||||
Martín, AB (2003). Sistematización del proceso de depuración de los datos en estudios con seguimientos. PhD Thesis, Universitat Autònoma de Barcelona, Spain. SPA | ||||
Massé, B and Schneider, D (2011). A survey on weighted densities and their connection with the first digit phenomenon. Rocky Mountain Journal of Mathematics 41(5), 1395-1415. ISSN/ISBN:0035-7596. DOI:10.1216/RMJ-2011-41-5-1395. | ||||
Nagasaka, K (1984). On Benford's Law. Annals of the Institute of Statistical Mathematics 36(2), pp. 337-352. ISSN/ISBN:0020-3157. DOI:10.1007/BF02481974. | ||||
Nagasaka, K (2008). Benford’s Law to Base g of Order r in the Sense of a Certain Density. Short talk at: Colloque international sur la répartition uniforme, Marseille, January 2008. | ||||
Nagasaka, K, Kanemitsu, S and Shiue, JS (1990). Benford’s law: The logarithmic law of first digit. In: Győry, K, Halász, G. (eds.) Number theory. Vol. I. Elementary and analytic, Proc. Conf., Budapest/Hung. 1987, Colloq. Math. Soc. János Bolyai 51, pp. 361-391 . | ||||
Nguyen, HT, Kreinovich, V and Longpré, L (2003). Dirty pages of logarithm tables, lifetime of the universe, and subjective (fuzzy) probabilities on finite and infinite intervals. The 12th IEEE International Conference on Fuzzy Systems. FUZZ’03. Fuzzy Systems 1, pp. 67-73. DOI:10.1109/FUZZ.2003.1209339. | ||||
Nguyen, HT, Kreinovich, V and Longpré, L (2004). Dirty Pages of Logarithm Tables, Lifetime of the Universe, and (Subjective) Probabilities on Finite and Innite Intervals. Reliable Computing 10(2), 83-106. DOI:10.1023/B:REOM.0000015848.19449.12. | ||||
Nigrini, MJ (1992). The Detection of Income Tax Evasion Through an Analysis of Digital Frequencies. PhD thesis, University of Cincinnati, OH, USA. | ||||
Nigrini, MJ (1996). Digital Analysis and the Reduction of Auditor Litigation Risk. Proceedings of the 1996 Deloitte & Touche / University of Kansas Symposium on Auditing Problems, ed. M. Ettredge, University of Kansas, Lawrence, KS, pp. 69-81. | ||||
Nigrini, MJ (2011). Forensic Analytics: Methods and Techniques for Forensic Accounting Investigations. John Wiley & Sons: Hoboken, New Jersey; (2nd edition published in 2020, isbn 978-1-119-58576-3). ISSN/ISBN:978-0-470-89046-2. | ||||
Nigrini, MJ (2012). Benford's Law: Applications for Forensic Accounting, Auditing, and Fraud Detection . John Wiley & Sons: Hoboken, New Jersey. ISSN/ISBN:978-1-118-15285-0. DOI:10.1002/9781119203094. | ||||
Pavlov, AI (1982). On the distribution of fractional parts and Benford’s law. Math. USSR Izvestija 19(1), 65-77. English translation of: Izv. Akad. Nauk SSSR Ser. Mat., 1981, 45(4), 760–774. DOI:10.1070/IM1982v019n01ABEH001411. | ||||
Pavlović, V, Knežević, G, Joksimović, M and Joksimović, D (2019). Fraud Detection in Financial Statements Applying Benford's Law with Monte Carlo Simulation. Acta oeconomica 69(2), pp.217-239. DOI:10.1556/032.2019.69.2.4. | ||||
Peter, M (2003). The asymptotic distribution of elements in automatic sequences. Theoretical Computer Science 301(1-3), pp. 285-312. DOI:10.1016/S0304-3975(02)00587-X. | ||||
Raimi, RA (1969). The Peculiar Distribution of First Digits. Scientific American 221(6), pp. 109-120. ISSN/ISBN:0036-8733. DOI: 10.1038/scientificamerican1269-109. | ||||
Raimi, RA (1969). On Distribution of First Significant Figures. American Mathematical Monthly 76(4), pp. 342-348. ISSN/ISBN:0002-9890. DOI:10.2307/2316424. | ||||
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349. | ||||
Richter, R (2015). Em busca de transparência: a Lei de Benford aplicada às despesas eleitorais. Monografia (Bacharelado em Ciências Econômicas)- Universidade de Brasília, Brasília. POR | ||||
Sarkar, BP (1973). An Observation on the Significant Digits of Binomial Coefficients and Factorials. Sankhya - The Indian Journal of Statistics Series B 35(3), 363-364. ISSN/ISBN:0581-5738. | ||||
Schatte, P (1973). Zur Verteilung der Mantisse in der Gleitkommadarstellung einer Zufallsgröße (Distribution of Mantissa in Floating Point Diagram of Random Variable). Zeitschrift fur Angewandte Mathematik und Mechanik 53(8), 553-565. ISSN/ISBN:0044-2267. DOI:10.1002/zamm.19730530807. GER | ||||
Schatte, P (1983). On H∞ -summability and the uniform distribution of sequences. Math. Nachr. 113, 237-243. DOI:10.1002/mana.19831130122. | ||||
Schatte, P (1986). On the Asymptotic Logarithmic Distribution of the Floating-Point Mantissas of Sums. Math. Nachr. 127, 7-20. ISSN/ISBN:0025-584X. DOI:10.1002/mana.19861250102. | ||||
Schatte, P (1988). On mantissa distributions in computing and Benford’s law. Journal of Information Processing and Cybernetics EIK 24(9), 443-455. ISSN/ISBN:0863-0593. | ||||
Schatte, P (1988). On the Almost Sure Convergence of Floating-Point Mantissas and Benford Law. Math. Nachr. 135, 79-83. ISSN/ISBN:0025-584X. DOI:10.1002/mana.19881350108. | ||||
Schatte, P (1998). On Benford's law to variable base. Statistics & Probability Letters 37(4): 391-397. ISSN/ISBN:0167-7152. DOI:10.1016/S0167-7152(97)00142-9. | ||||
Schatte, P (2001). Briefe an die Herausgeber. Mitteilungen der Deutschen Mathematiker Vereinigung, 2/2001, pp 6-7. | ||||
Scheidt, JK and Schelin, CW (1987). Distributions of floating point numbers. Computing 38(4), 315-324. ISSN/ISBN:0010-485X. DOI:10.1007/BF02278709. | ||||
Scott, PD and Fasli, M (2001). Benford’s law: an empirical investigation and a novel explanation. CSM Technical Report 349, Department of Computer Science, University of Essex, UK. | ||||
Sharpe, MJ (2006). Limit Laws and Mantissa Distributions. Probability and Mathematical Statistics 26(1), 175-185. | ||||
Sugiarto, T, Noorzaman, S, Madu, L, Subagyo, A and Amiri, AM (2017). First Digit Lucas, Fibonacci and Benford Number in Financial Statement. Proceedings of the 2017 International Conference on Economic Development and Education Management (ICEDEM 2017). DOI:10.2991/icedem-17.2017.6. | ||||
Tsao, NK (1974). On the Distributions of Significant Digits and Roundoff Errors. Communications of the ACM 17(5), 269-271. ISSN/ISBN:0001-0782. DOI:10.1145/360980.360998. | ||||
Turner, PR (1982). The Distribution of Leading Significant Digits. IMA Journal orf Numerical Analysis 2(4), 407-412. ISSN/ISBN:0272-4979. DOI:10.1093/imanum/2.4.407. | ||||
Turner, PR (1984). Further Revelations on L.S.D.. IMA Journal of Numerical Analysis 4(2), 225-231. ISSN/ISBN:0272-4979. DOI:10.1093/imanum/4.2.225. | ||||
Volcic, A (1996). The First Digit Problem and Scale-Invariance. In: P. Marcellini, G. Talenti and E. Vesentini (eds), Partial differential equations and applications: collected papers in honor of Carlo Pucci. Marcel Dekker, pp. 329-340 . | ||||
Wang, L and Ma, B-Q (2023). A concise proof of Benford’s law. Fundamental Research . DOI:10.1016/j.fmre.2023.01.002. | ||||
Weisstein, EW (2003). Benford's Law. pp 181-182 in: CRC concise encyclopedia of mathematics, Chapman & Hall. | ||||
Weisstein, EW (2009). Benford's Law. MathWorld (A Wolfram Web Resource). |