Amanda Bowman, A (2016). Contributions to the Testing of Benford's Law. Masters Thesis, McMaster University, Hamilton, Canada.





Burgos, A and Santos, A (2021). The Newcomb–Benford law: Scale invariance and a simple Markov process based on it (Previous title: The Newcomb–Benford law: Do physicists use more frequently the key 1 than the key 9?). Preprint arXiv:2101.12068 [physics.popph]; last accessed October 5, 2021.





Cerqueti, R and Maggi, M (2021). Data validity and statistical conformity with Benford’s Law. Chaos, Solitons & Fractals 144, p. 110740
. DOI:10.1016/j.chaos.2021.110740.





da Silva, AJ, Floquet, S, Santos, DOC and Lima, RF (2020). On the validation of the NewcombBenford Law and the Weibull distribution in neuromuscular transmission. Physica A 553, 1 September 2020, 124606. DOI:10.1016/j.physa.2020.124606.





Farhadi, N and Lahooti, H (2021). Are COVID19 Data Reliable? A Quantitative Analysis of Pandemic Data from 182 Countries. COVID 1, pp. 137–152. DOI:10.3390/covid1010013.





Horton, J, Kumar, DK and Wood, A (2020). Detecting academic fraud using Benford law: The case of Professor James Hunton. Research Policy 49(8), 104084
. DOI:10.1016/j.respol.2020.104084.





Hull, B, Long, A and Hughes, IG (2022). Using residual heat maps to visualise Benford's multidigit law. European Journal of Physics 43, 015803. DOI:10.1088/13616404/ac3671.





Kennedy, AP and Yam, SCP (2020). On the authenticity of COVID19 case figures. PLoS ONE 15(12): e0243123. DOI:10.1371/journal.pone.0243123.





Kossovsky, AE (2021). On the Mistaken Use of the ChiSquare Test in Benford’s Law. Stats 4(2), pp. 419–453. DOI:10.3390/stats4020027.





Lanham, SW (2019). Analyzing Big Data with Benford’s Law: A Lesson for the Classroom. American Journal of Business Education 12(2), pp. 3342. DOI:10.19030/ajbe.v12i2.10285.





McCarville, D (2021). A data transformation process for using Benford’s Law with bounded data. Preprint [version 1; peer review: awaiting peer review], Emerald Open Research 3(29). DOI:10.35241/emeraldopenres.14374.1.





Nigrini, MJ (2016). The Implications of the Similarity between Fraud Numbers and the Numbers in Financial Accounting Textbooks and Test Banks. Journal of Forensic Accounting Research, Vol. 1, No. 1, pp. A1A26. DOI:10.2308/jfar51465.





Nigrini, MJ (2017). Audit Sampling Using Benford's Law: A Review of the Literature With Some New Perspectives. Journal of Emerging Technologies in Accounting Vol. 14, No. 2,
pp. 29–46. DOI:10.2308/jeta51783.




