This work is cited by the following items of the Benford Online Bibliography:
Aldous, D and Phan, T (2009). When Can One Test an Explanation? Compare and Contrast Benford's Law and the Fuzzy CLT. Class project report, Statistics Department, UC Berkeley. | ||||
Aldous, D and Phan, T (2010). When Can One Test an Explanation? Compare and Contrast Benford's Law and the Fuzzy CLT. The American Statistician 64(3), pp. 221–227. ISSN/ISBN:0003-1305. DOI:10.1198/tast.2010.09098. | ||||
Balado, F and Silvestre, GCM (2021). Benford's Law: Hammering a Square Peg Into a Round Hole?. 29th European Conference on Signal Processing (EUSIPCO), Dublin, Ireland, August, 2021, pp. 796-800. ISSN/ISBN: 978-9-0827-9707-7. | ||||
Balanzario, EP and Sánchez-Ortiz, J (2010). Sufficient conditions for Benford’s law. Statistics & Probability Letters 80(23-24), pp. 1713-1719. DOI:10.1016/j.spl.2010.07.014. | ||||
Barabesi, L and Pratelli, L (2020). On the Generalized Benford law. Statistics & Probability Letters 160, 108702 . DOI:10.1016/j.spl.2020.108702. | ||||
Baumeister, J and Macedo, TG (2011). Von den Zufallszahlen und ihrem Gebrauch. Stand: 21, November 2011. GER | ||||
Benford, FA (2020). Fourier Analysis and Benford Random Variables. Preprint arXiv:arXiv:2006.07136 [stat.OT]; last accessed June 20, 2020. | ||||
Benford, FA (2021). Base Dependence of Benford Random Variables. Stats 4(3), pp. 578-594. DOI:10.3390/stats4030034. | ||||
Berger, A (2010). Large spread does not imply Benford's Law. Technical Report, Dept. of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, Canada. | ||||
Berger, A and Hill, TP (2010). Fundamental Flaws in Feller’s Classical Derivation of Benford’s Law. University of Alberta preprint; posted on math arXiv 14May 2010. | ||||
Berger, A and Hill, TP (2011). Benford's Law Strikes Back: No Simple Explanation in Sight for Mathematical Gem. The Mathematical Intelligencer 33(1), pp. 85-91. DOI:10.1007/ s00283-010-9182-3. | ||||
Berger, A and Hill, TP (2011). A basic theory of Benford's Law . Probability Surveys 8, pp. 1-126. DOI:10.1214/11-PS175. | ||||
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062. | ||||
Berger, A, Hill, TP, Kaynar, B and Ridder, A (2011). Finite-state Markov Chains Obey Benford's Law. SIAM Journal of Matrix Analysis and Applications 32(3), pp. 665-684. DOI:10.1137/100789890. | ||||
Berger, A and Twelves, I (2018). On the significands of uniform random variables. Journal of Applied Probability 55(2), pp. 353-367. DOI:10.1017/jpr.2018.23. | ||||
Berger, A and Xu, C (2018). Best Finite Approximations of Benford’s Law. Journal of Theoretical Probability. DOI:10.1007/s10959-018-0827-z. | ||||
Block, HW and Savits, TH (2010). A General Example for Benford Data. The American Statistician 64(4), pp. 335-339. | ||||
Boyle, J (1994). An Application of Fourier Series to the Most Significant Digit Problem. American Mathematical Monthly 101(9), pp. 879-886. ISSN/ISBN:0002-9890. DOI:10.2307/2975136. | ||||
Cai, Z, Faust, M, Hildebrand, AJ, Li, J and Zhang, Y (2019). The Surprising Accuracy of Benford’s Law in Mathematics. Preprint arXiv:1907.08894 [math.PR]; last accessed July 31, 2019. | ||||
Cai, Z, Faust, M, Hildebrand, AJ, Li, J and Zhang, Y (2020). The Surprising Accuracy of Benford’s Law in Mathematics. The American Mathematical Monthly 127(3), pp. 217-237. DOI:10.1080/00029890.2020.1690387. | ||||
Carslaw, CAPN (1988). Anomalies in Income Numbers: Evidence of Goal Oriented Behavior. The Accounting Review 63(2), pp. 321-327. | ||||
Crato, N (2010). Mr. Benford. In: Figuring It Out: Entertaining Encounters with Everyday Math, Springer-Verlag: Berlin, pp. 173-177. ISSN/ISBN:978-3-642-04833-3. DOI:10.1007/978-3-642-04833-3_41. | ||||
Diaconis, P (1977). The Distribution of Leading Digits and Uniform Distribution Mod 1. Annals of Probability 5(1), pp. 72-81. ISSN/ISBN:0091-1798. | ||||
Diaconis, P (1977). Examples of the theory of infinite iteration of summability methods. Canadian Journal of Mathematics 29(3), pp. 489-497. DOI:10.4153/CJM-1977-053-1. | ||||
Diaconis, P (2002). G.H. Hardy and Probability ???. Bulletin of the London Mathematical Society 34(4), pp. 385-402. DOI:10.1112/S002460930200111X. | ||||
Diaconis, P and Freedman, D (1979). On Rounding Percentages. Journal of the American Statistical Association 74(366), pp. 359-364. ISSN/ISBN:0162-1459. | ||||
Dickinson, JR (2002). A universal mathematical law criterion for algorithmic validity. Developments in Business Simulation and Experiential Learning 29, pp. 26-33. | ||||
Eliazar, II (2017). Harmonic statistics. Annals of Physics, Volume 380, pp. 168-187. DOI:10.1016/j.aop.2017.03.016. | ||||
Fairthorne, RA (1969). Progress in Documentation - Empirical Hyperbolic Distributions (Bradford-Zipf-Mandelbrot) for Bibliometric Description and Prediction. Journal of Documentation 25(4), pp. 319-343; reprinted 2005 in Journal of Documentation 61(2), pp. 171-193. ISSN/ISBN:0022-0418. DOI:10.1108/00220410510585179. | ||||
Francischetti, CE (2007). Aplicação da lei dos números anômalos ou Lei de Newcomb- Benford para o controle das demonstrações financeiras das organizações [Application of the law of anomalous numbers or the Newcomb-Benford Act to control the financial statements of organizations]. Masters thesis, Universidade Metodista de Piracicaba, Brasil. POR | ||||
Freeman, RB (2018). Benford's Law. Lecture 17 notes for Economics 1818 course, Harvard University. | ||||
Friar, JL, Goldman, T and Pérez-Mercader, J (2016). Ubiquity of Benford’s law and emergence of the reciprocal distribution. Physics Letters A 380(22), pp. 1895–1899. ISSN/ISBN:0375-9601. DOI:10.1016/j.physleta.2016.03.045. | ||||
Gámez, RAM and Rivera, CEA (2009). Ley de Benford y sus aplicaciones. Undergraduate Thesis, . SPA | ||||
Giuliano, R (2011). Weak convergence of sequences from fractional parts of random variables and applications. Theory of Probability and Mathematical Statistics 83, pp. 59-69. DOI:10.1090/S0094-9000-2012-00841-7 . | ||||
Giuliano-Antonini, R (1991). On the notion of uniform distribution mod 1. Fibonacci Quarterly 29(3), pp. 230-234. | ||||
Giuliano-Antonini, R and Grekos, G (2005). Regular sets and conditional density: an extension of Benford's law. Colloquium Mathematicum, 103(2), pp. 173–192. DOI:10.4064/cm103-2-3. | ||||
Good, IJ (1986). Some statistical applications of Poisson’s work. Statistical Science 1(2), pp. 157-170. | ||||
Hill, TP (1995). Base-Invariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887-895. ISSN/ISBN:0002-9939. DOI:10.2307/2160815. | ||||
Hill, TP (2011). Benford's Law Blunders. Letter to the Editor, The American Statistician, May 2011, Vol. 65, No. 2, p. 141. | ||||
Huxley, SJ (1999). Why Benford's Law works and How to do digit analysis on spreadsheets. Presented at the 1999 International Conference of the Decision Sciences Institute. | ||||
Kontorovich, AV and Miller, SJ (2005). Benford's Law, Values of L-functions and the 3x+ 1 Problem. Acta Arithmetica 120(3), pp. 269-297. ISSN/ISBN:0065-1036. DOI:10.4064/aa120-3-4. | ||||
Kossovsky, AE and Lawton, WM (2023). A Mathematical Analysis of Benford's Law and its Generalization. Preprint arXiv:2308.07773 [stat.ME]; last accessed August 24, 2023. | ||||
Kozlov, VV (2005). Weighted averages, uniform distribution, and strict ergodicity. Russian Mathematical Surveys 60(6), pp. 1121-1146. ISSN/ISBN:0036-0279. DOI:10.1070/RM2005v060n06ABEH004284. | ||||
Kuipers, L and Niederreiter, H (1974). Uniform Distribution of Sequences. J. Wiley; newer edition - 2006 from Dover. ISSN/ISBN:0486450198. | ||||
Kulikova, AA and Prokhorov, YV (2005). Completely asymmetric stable laws and Benford’s law. Theory of Probability and its Application 49(1), pp. 163-169. DOI:10.1137/S0040585X97980944. | ||||
Kulikova, AA, Prokhorov, YV and Khokhlov, VI (2006). H.F.D. (H-function Distribution) and Benford's Law. I. Theory of Probability & Its Applications 50(2), pp. 311-315 . DOI:10.1137/S0040585X97981706. | ||||
Lolbert, T (2006). Digital Analysis: Theory and Applications in Auditing. Hungarian Statistical Review 84, Special number 10, p. 148. ISSN/ISBN:0039 0690. | ||||
Lolbert, T (2007). Statisztikai eljárások alkalmazása az ellenőrzésben (Applications of statistical methods in monitoring). PhD thesis, Corvinus University, Budapest, Hungary. HUN | ||||
Miller, SJ (2008). Benford’s Law and Fraud Detection, or: Why the IRS Should Care About Number Theory!. Presentation for Bronfman Science Lunch Williams College, October 21. | ||||
Miller, SJ (2016). Can math detect fraud? CSI: Math: The natural behavior of numbers. Presentation at Science Cafe, Northampton, September 26; last accessed July 4, 2019. | ||||
Miller, SJ and Nigrini, MJ (2006). Order Statistics and Shifted Almost Benford Behavior. Posted on Math Arxiv, January 13, 2006. | ||||
Miller, SJ and Nigrini, MJ (2008). Order Statistics and Benford's Law. International Journal of Mathematics and Mathematical Sciences, Art. ID 382948. ISSN/ISBN:0161-1712. DOI:10.1155/2008/382948. | ||||
Miller, SJ and Takloo-Bighash, R (2006). An invitation to modern number theory. Princeton University Press. ISSN/ISBN:978-0691120607. | ||||
Miller, SJ and Takloo-Bighash, R (2007). Introduction to Random Matrix Theory. In: An Invitation to Modern Number Theory, Princeton University Press. ISSN/ISBN:9780691120607. | ||||
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1. | ||||
Mir, TA and Ausloos, M (2018). Benford's law: a 'sleeping beauty' sleeping in the dirty pages of logarithmic tables. Journal of the Association for Information Science and Technology 69(3) pp. 349–358. DOI:10.1002/asi.23845. | ||||
Mörters, P (2001). Benford’s Gesetz über die Verteilung der Ziffern. Habilitationsvorlesung. Kaiserslauten und Bath. GER | ||||
Mosimann, JE, Wiseman CV and Edelman RE (1995). Data fabrication: Can people generate random digits?. Accountability in Research: Policies and Quality Assurance 4(1), pp. 31-55. DOI:10.1080/08989629508573866. | ||||
Nigrini, MJ (1996). Digital Analysis and the Reduction of Auditor Litigation Risk. Proceedings of the 1996 Deloitte & Touche / University of Kansas Symposium on Auditing Problems, ed. M. Ettredge, University of Kansas, Lawrence, KS, pp. 69-81. | ||||
Nigrini, MJ (2011). Forensic Analytics: Methods and Techniques for Forensic Accounting Investigations. John Wiley & Sons: Hoboken, New Jersey; (2nd edition published in 2020, isbn 978-1-119-58576-3). ISSN/ISBN:978-0-470-89046-2. | ||||
Phatarfod, R (2013). Some aspects of the Benford law of leading significant digits. The Mathematical Scientist, Applied Probability Trust, 38 (2), pp 73-85. ISSN/ISBN:03123685. | ||||
Pike, DP (2008). Testing for the Benford property. SIAM Undergraduate Research Online (SIURO) 1(1), pp. 10-19. | ||||
Pocheau, A (2006). The significant digit law: a paradigm of statistical scale symmetries . European Physical Journal B 49(4), pp. 491-511. ISSN/ISBN:1434-6028. DOI:10.1140/epjb/e2006-00084-2. | ||||
Posch, PN (2005). Ziffernanalyse in Theorie und Praxis. Testverfahren zur Fälschungsaufspürung mit Benfords Gesetz. Diploma thesis, Universität Bonn, Germany, 2003. Published by Shaker Verlag, Aachen. GER | ||||
Posch, PN (2008). A Survey on Sequences and Distribution Functions satisfying the First-Digit-Law. Journal of Statistics & Management Systems 11(1), pp. 1-19. DOI:10.1080/09720510.2008.10701294. | ||||
Posch, PN (2010). Ziffernanalyse mit dem Newcomb-Benford Gesetz in Theorie und Praxis. VEW Verlag Europäische Wirtschaft: Munich 2nd edition. GER | ||||
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349. | ||||
Ross, KA (2011). Benford's Law, a growth industry. American Mathematical Monthly 118 (7), pp. 571-583. ISSN/ISBN:0002-9890. DOI:10.4169/amer.math.monthly.118.07.571. | ||||
Sambridge, M, Tkalčić, H and Arroucau, P (2011). Benford's Law of First Digits: From Mathematical Curiosity to Change Detector. Asia Pacific Mathematics Newsletter 1(4), October 2011, 1-6. ISSN/ISBN:2010-3484. | ||||
Schatte, P (2001). Briefe an die Herausgeber. Mitteilungen der Deutschen Mathematiker Vereinigung, 2/2001, pp 6-7. | ||||
Schürger, K (2008). Extensions of Black-Scholes processes and Benford's law. Stochastic Processes and their Applications 118(7), 1219-1243. ISSN/ISBN:0304-4149. DOI:10.1016/j.spa.2007.07.017. | ||||
Szewczak, ZS (2010). A limit theorem for random sums modulo 1. Statistics & Probability Letters 80(9) pp. 747-751. DOI:10.1016/j.spl.2010.01.005. | ||||
Tsagbey, S, de Carvalho, M and Page, GL (2017). All Data are Wrong, but Some are Useful? Advocating the Need for Data Auditing . The American Statistician, 71, pp. 231--235. DOI:10.1080/00031305.2017.1311282. | ||||
Valadier, M (2012). The Benford phenomenon for random variables. Discussion of Feller's way. Math arXiv:1203.2518; posted 19 Apr 2012. | ||||
Whittaker, JV (1983). On scale-invariant distributions. SIAM Journal on Applied Mathematics 43(2), pp. 257-267. DOI:10.1137/0143017. | ||||
Wojcik, MR (2013). Notes on scale-invariance and base-invariance for Benford's Law. arXiv:1307.3620 [math.PR]. | ||||
Wouk, A (1961). On digit distributions of random variables. J. Soc. Indust. Appl. Math. 9(4), 597-603. ISSN/ISBN:0368-4245. DOI:10.1137/0109050. | ||||
Xi'an (2010). Versions of Benford’s Law. Blogpost on Xi'an's OG. | ||||
Yang, L and Fu, Z (2017). Out-phased decadal precipitation regime shift in China and the United States. Theor Appl Climatol (2017) 130, pp. 535–544. DOI:10.1007/s00704-016-1907-6. |