This work is cited by the following items of the Benford Online Bibliography:
Dümbgen, L and Leuenberger, C (2008). Explicit Bounds for the Approximation Error in Benford’s Law. Electronic Communications in Probability 13, pp. 99-112. ISSN/ISBN:1083-589X. DOI:10.1214/ECP.v13-1358. | ||||
Eliahou, S, Massé, B and Schneider, D (2013). On the mantissa distribution of powers of natural and prime numbers. Acta Mathematica Hungarica, 139(1), pp. 49-63. ISSN/ISBN:0236-5294. DOI:10.1007/s10474-012-0244-1. | ||||
Engel, HA and Leuenberger, C (2003). Benford's law for exponential random variables. Statistics & Probability Letters 63, pp. 361-365. ISSN/ISBN:0167-7152. | ||||
Farnsworth, DF, Horan, KK and Galgon, RM (2007). A guide to Benford's law. Mathematics and Computer Education 41(3), pp. 230-243. ISSN/ISBN:0730-8639. | ||||
Giles, DE (2013). Exact Asymptotic Goodness-of-Fit Testing for Discrete Circular Data, With Applications. Chilean Journal of Statistics 4(1), pp.19-34. ISSN/ISBN:0718-7912. | ||||
Hüngerbühler, N (2007). Benfords Gesetz über führende Ziffern: Wie die Mathematik Steuersündern das Fürchten lehrt. EDUCETH - Das Bildungsportal der ETH Zürich. GER | ||||
Jameson, M, Thorner, J and Ye, L (2014). Benford's Law for Coefficients of Newforms. arXiv:1407.1577 [math.NT]; posted July 7, 2014; last accessed November 10, 2014. | ||||
Janvresse, É (2012). Quelques contributions aux probabilités eta la théorie ergodique. Document de synthèse présenté pour l’Habilitation à Diriger des Recherches, l’université de Rouen. FRE | ||||
Janvresse, É and de la Rue, T (2012). Averaging along Uniform Random Integers. Uniform Distribution Theory 7(2), pp. 35–60. | ||||
Jech, T (1992). The Logarithmic Distribution of Leading Digits and Finitely Additive Measures. Discrete Mathematics 108(1-3), pp. 53-57. ISSN/ISBN:0012-365X. DOI:10.1016/0012-365X(92)90659-4. | ||||
Kanemitsu, S, Nagasaka, K, Rauzy, G and Shiue, JS (1988). On Benford’s law: the first digit problem. Lecture Notes in Mathematics 1299, pp. 158-169 (eds. Watanabe, S, and Prokhorov, YV). ISSN/ISBN:978-3-540-18814-8. DOI:10.1007/BFb0078471. | ||||
Kozlov, VV (2005). Weighted averages, uniform distribution, and strict ergodicity. Russian Mathematical Surveys 60(6), pp. 1121-1146. ISSN/ISBN:0036-0279. DOI:10.1070/RM2005v060n06ABEH004284. | ||||
Lusk, EJ and Halperin, M (2014). Test of Proportions Screening for the Newcomb-Benford Screen in the Audit Context: A Likelihood Triaging Protocol. Journal of Accounting and Finance Research 3(4), pp. 166-180. DOI:10.5430/afr.v3n4p166. | ||||
Lusk, EJ and Halperin, M (2015). Testing the mixing property of the Newcomb-Benford Profile: Implications for the audit context. International Journal of Economics & Finance 7(6), pp. 42-50. DOI:10.5539/ijef.v7n6p42. | ||||
Lusk, EJ and Halperin, M (2015). Account Screening Based Upon Digital Frequency Profiling in the Internal Audit Context: A Cartesian Distance Likelihood Triaging Protocol. Business Management Dynamics 5(3), pp.12-17. | ||||
Massé, B and Schneider, D (2011). A survey on weighted densities and their connection with the first digit phenomenon. Rocky Mountain Journal of Mathematics 41(5), 1395-1415. ISSN/ISBN:0035-7596. DOI:10.1216/RMJ-2011-41-5-1395. | ||||
Massé, B and Schneider, D (2012). Random number sequences and the first digit phenomenon. Electronic Journal of Probability, Vol 17, Article 86, pp. 1-17 . DOI:10.1214/EJP.v17-1900. | ||||
Nagasaka, K, Kanemitsu, S and Shiue, JS (1990). Benford’s law: The logarithmic law of first digit. In: Győry, K, Halász, G. (eds.) Number theory. Vol. I. Elementary and analytic, Proc. Conf., Budapest/Hung. 1987, Colloq. Math. Soc. János Bolyai 51, pp. 361-391 . | ||||
Pavlović, V, Knežević, G, Joksimović, M and Joksimović, D (2019). Fraud Detection in Financial Statements Applying Benford's Law with Monte Carlo Simulation. Acta oeconomica 69(2), pp.217-239. DOI:10.1556/032.2019.69.2.4. | ||||
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349. | ||||
Vardi, I (1999). Premiers chiffres significatifs et nombres algébriques. [Leading digits and algebraic numbers.]. Comptes rendus de l’Academie des sciences, Serie I 328 (9), 749-754. ISSN/ISBN:0764-4442. DOI:10.1016/S0764-4442(99)80265-1. FRE | ||||
Whitney, RE (1972). Initial digits for the sequence of primes. American Mathematical Monthly 79(2), pp. 150-152. ISSN/ISBN:0002-9890. | ||||
Wong, SCY (2010). Testing Benford’s Law with the first two significant digits. Master's Thesis, University of Victoria, Canada. |