Iorliam, A (2016). Application of power laws to biometrics, forensics and network traffic analysis. PhD Thesis, University of Surrey.
|
|
|
|
|
Iorliam, A (2019). Combination of Natural Laws (Benford’s Law and Zipf’s Law) for Fake News Detection. In: Cybersecurity in Nigeria. SpringerBriefs in Cybersecurity. Springer, Cham. DOI:10.1007/978-3-030-15210-9_3.
|
|
|
|
|
Iorliam, A (2019). Natural Laws (Benford’s Law and Zipf’s Law) for Network Traffic Analysis. In: Cybersecurity in Nigeria. SpringerBriefs in Cybersecurity. Springer, Cham, pp. 3-22. ISSN/ISBN:978-3-030-15210-9. DOI:10.1007/978-3-030-15210-9_2.
|
|
|
|
|
Iorliam, A, Emmanual, O and Shehu, YI (2021). An Investigation of "Benford's" Law Divergence and Machine Learning Techniques for "Intra-Class" Separability of Fingerprint Images. Preprint arXiv:2201.01699 [cs.CV]; last accessed January 12, 2022.
|
|
|
|
|
Iorliam, A, Ho, AT, Poh, N, Zhao, X and Xia, Z (2017). Benford's law for classification of biometric images. In: User-Centric Privacy and Security in Biometrics, Claus Vielhauer (Ed.). ISSN/ISBN:9781785612077. DOI:10.1049/PBSE004E_ch11.
|
|
|
|
|
Iorliam, A, Ho, ATS, Poh, N and Shi, YQ (2014). Do Biometric Images Follow Benford's Law?. Proceedings of the 22nd European Signal Processing Conf.(Eusipco). DOI:10.1109/IWBF.2014.6914261.
|
|
|
|
|
Iorliam, A, Ho, ATS, Waller, A and Zhao, X (2017). Using Benford's Law Divergence and Neural Networks for Classification and Source Identification of Biometric Images. In: Shi Y., Kim H., Perez-Gonzalez F., Liu F. (eds) Digital Forensics and Watermarking. IWDW 2016. Lecture Notes in Computer Science, vol 10082. Springer, Cham, pp. 88-105. DOI:10.1007/978-3-319-53465-7_7.
|
|
|
|
|
Iorliam, A and Shangbum, FC (2017). On the Use of Benford’s Law to Detect JPEG Biometric Data Tampering. Journal of Information Security 8, pp. 240-256. DOI:10.4236/jis.2017.83016.
|
|
|
|
|
Iorliam, A, Tirunagari, S, Ho, ATS, Li, S, Waller, A and Poh, N (2017). "Flow Size Difference" Can Make a Difference: Detecting Malicious TCP Network Flows Based on Benford's Law. arXiv:1609.04214v2 [cs.CR], last accessed February 6, 2017.
|
|
|
|
|
Joksimović, D, Knežević, G, Pavlović, V, Ljubić, M and Surovy, V (2017). Some Aspects of the Application of Benford’s Law in the Analysis of the Data Set Anomalies. In: Knowledge Discovery in Cyberspace: Statistical Analysis and Predictive Modeling. New York: Nova Science Publishers, pp. 85–120. ISSN/ISBN:978-1-53610-566-7.
|
|
|
|
|
Mire, A, Dhok, SB, Mistry, NJ and Porey, PD (2016). Tampering Localization in Digital Image Using First Two Digit Probability Features. In: Satapathy, S., Mandal, J., Udgata, S., Bhateja, V. (eds) Information Systems Design and Intelligent Applications. Advances in Intelligent Systems and Computing, vol 435. Springer, New Delhi, pp. 133-151. DOI:10.1007/978-81-322-2757-1_15.
|
|
|
|
|
Parnak, A, Damavandi, YB and Kazemitabar, SJ (2022). A Novel Image Splicing Detection Algorithm based on Generalized and Traditional Benford’s Law. International Journal of Engineering, Transactions A: Basics 35(4), pp. 626-634.
|
|
|
|
|
Satapathy, G, Bhattacharya, G, Puhan, NB and Ho, ATS (2020). Generalized Benford’s Law for Fake Fingerprint Detection. Proceedings of 2020 IEEE Applied Signal Processing Conference (ASPCON), Kolkata, pp. 242-246. DOI:10.1109/ASPCON49795.2020.9276660.
|
|
|
|
|
Sethi, K, Kumar, R, Prajapati, N and Bera, P (2020). A Lightweight Intrusion Detection System using Benford's Law and Network Flow Size Difference. Proceedings of 2020 International Conference on COMmunication Systems NETworkS (COMSNETS). DOI:10.1109/COMSNETS48256.2020.9027422.
|
|
|
|
|
Sun, L, Ho, ATS, Xia, Z, Chen, J, Huang, X and Zhang, Y (2017). Detection and Classification of Malicious Patterns In Network Traffic Using Benford’s Law. 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Kuala Lumpur, pp. 864-872. DOI:10.1109/APSIPA.2017.8282154.
|
|
|
|
|