This work is cited by the following items of the Benford Online Bibliography:
Branets, S (2019). Detecting money laundering with Benford’s law and machine learning . Masters Thesis, University of Tartu. | ||||
Etim, ES, Daferighe, EE, Inyang, AB and Ekikor, ME (2023). Application of Benford’s Law and the Detection of Accounting Data Fraud in Nigeria. International Journal of Auditing and Accounting Studies 5(2) pp. 119-163. DOI:10.47509/IJAAS.2023.v05i02.01. | ||||
González, F (2019). Detecting Anomalous Data in Household Surveys: Evidence for Argentina. Journal of Social and Economic Statistics 8(2), pp. 1-10. DOI:10.2478/jses-2019-0001. | ||||
González, F (2020). Self-reported income data: are people telling the truth?. To appear in Journal of Financial Crime. DOI:10.1108/JFC-08-2019-0113. | ||||
Kopczewski, T and Okhrimenko, I (2019). Playing with Benford’s Law. e-mentor 80(3), pp. 34−44 . | ||||
Kordestani, G and Tatli, R (2016). The review of earnings management in different level of conservatism and institutional investors base Benford law. The Iranian Accounting and Auditing Review 23 (1), pp. 73–96. DOI:10.22059/ACCTGREV.2016.58467. PER | ||||
Kossovsky, AE (2014). Benford's Law: Theory, the General Law of Relative Quantities, and Forensic Fraud Detection Applications. World Scientific Publishing Company: Singapore. ISSN/ISBN:978-981-4583-68-8. | ||||
Leonov, PY, Suyts, VP, Rychkov, VA, Ezhova, AA, Sushkov, VM and Kuznetsova, NV (2021). Possibility of Benford’s Law Application for Diagnosing Inaccuracy of Financial Statements. In: Klimov, V.V., Kelley, D.J. (eds) Biologically Inspired Cognitive Architectures 2021. BICA 2021. Studies in Computational Intelligence, vol 1032. Springer, Cham., pp. 243-248. ISSN/ISBN:978-3-030-96993-6. DOI:10.1007/978-3-030-96993-6_24. | ||||
Lin, F, Wu, CM, Fang, TY and Wun, JC (2014). The relations among accounting conservatism, institutional investors and earnings manipulation. Economic Modelling, 37, pp. 164-174. DOI:10.1016/j.econmod.2013.10.020. | ||||
Mahasuar, K (2021). Lies, damned lies, and statistics: The uncertainty over COVID-19 numbers in India. Knowledge and Process Management, pp. 1– 8. DOI:10.1002/kpm.1685. | ||||
Montaño, VS, Utida, S and Remolar, A (2017). Forensic Analytics of Financial Report in Philippines Property Sector. The Benford's Law Application. Munich Germany: Grin Verlag. ISSN/ISBN:9783668543904. | ||||
Ollén, ER and Wennberg, J (2021). Assessing practicalities of Benford's Law: A study of the law's potential to detect fraud in transactional data. Bachelor thesis, Dept. of Economics, Lund University. | ||||
Omerzu, N and Kolar, I (2019). Do the Financial Statements of Listed Companies on the Ljubljana Stock Exchange Pass the Benford’s Law Test?. International Business Research, Canadian Center of Science and Education 12(1), pp. 54-64, January. DOI:10.5539/ibr.v12n1p54. | ||||
Onur, Ö and Yazdifar, H (2020). Assessing the Fraud Risk Factors in the Finance Statements with Benford's Law. Journal of accounting and taxation studies (in press). | ||||
Özari, C and Ocak, M (2013). Detection of Earnings Management By Applying Benford's Law in Selected Accounts: Evidence From Quarterly Financial Statements of Turkish Public Companies. European Journal of Economics, Finance and Administrative Sciences 59(4), pp. 37-52. | ||||
Özevin, O, Yücel, R and Öncü, MA (2020). Fraud Detecting with Benford’s Law: An Alternative Approach with {BDS} and Critic Values. Muhasebe Bilim Dünyası Dergisi 22(1), pp. 107-126. DOI:10.31460/mbdd.609957. | ||||
Plaček, M (2014). Applying Benford’s law by testing the government macroeconomics data. Acta academica karviniensia 14(3), pp. 148-160. DOI:10.25142/aak.2014.056. | ||||
Singh, N and Amat, O (2020). Detecting accounting fraud using quantitative techniques. University Pompeu Fabra Barcelona, Dept. of Economics and Business, Economics Working Paper Series Working Paper No. 1738. | ||||
Yildiz, MS (2018). Benford Yasasının Veri Doğruluğunun Değerlendirilmesi Amaçlı Kullanımı: Hastane Verileri İçin Bir Uygulama [Use of Benford's Law to Evaluate Data Accuracy: An Application for Hospital Data]. Yönetim ve Ekonomi 25(3), pp. 849-861. DOI:10.18657/yonveek.336919. TUR |