This work is cited by the following items of the Benford Online Bibliography:
Amanda Bowman, A (2016). Contributions to the Testing of Benford's Law. Masters Thesis, McMaster University, Hamilton, Canada. | ||||
Anderson, KM, Dayaratna, K, Gonshorowski, D and Miller, SJ (2022). A New Benford Test for Clustered Data with Applications to American Elections. Stats 5(3), pp. 841–855. DOI:10.3390/stats5030049 . | ||||
Barabesi, L, Cerasa, A, Cerioli, A and Perrotta, D (2021). On characterizations and tests of Benford’s law. Journal of the American Statistical Association. DOI:10.1080/01621459.2021.1891927. | ||||
Barabesi, L, Cerioli, A and Perrotta, D (2021). Forum on Benford’s law and statistical methods for the detection of frauds. Statistical Methods & Applications 30, pp. 767–778. DOI:10.1007/s10260-021-00588-0. | ||||
Bastian, H, Frye, E, Gary, C, Houck, D, Schneider, M, Thomason, F and Werner, B (2021). Data Analytics to Enhance Election Transparency. Critique of MITRE Report MP210086, Appendix C. | ||||
Beiglou, PHB, Gibbs, C, Rivers, L, Adhikari, U and Mitchell, J (2017). Applicability of Benford’s Law to Compliance Assessment of Self-Reported Wastewater Treatment Plant Discharge Data. Journal of Environmental Assessment Policy and Management 19(04). DOI:10.1142/S146433321750017X. | ||||
Burgos, A and Santos, A (2021). The Newcomb–Benford law: Scale invariance and a simple Markov process based on it (Previous title: The Newcomb–Benford law: Do physicists use more frequently the key 1 than the key 9?). Preprint arXiv:2101.12068 [physics.pop-ph]; last accessed August 8, 2022; Published Am. J. Phys. 89, pp. 851-861. | ||||
Campos, L, Salvo, AE and Flores-Moya, A (2016). Natural taxonomic categories of angiosperms obey Benford's law, but artificial ones do not. Systematics and Biodiversity 14(5), pp. 431-440. ISSN/ISBN:1477-2000 (Print)/ 1. DOI:10.1080/14772000.2016.1181683. | ||||
Capalbo, F, Galati, L, Lupi, C and Smarra, M (2022). The Impact of Elections on the Quality of Financial Statements in Municipally Owned Entities. University of Molise Economics and Statistics Discussion Paper n. 078/22. | ||||
Cerioli, A, Barabesi, L, Cerasa, A, Menegatti, M and Perrotta, D (2019). Newcomb-Benford law and the detection of frauds in international trade. Proceedings of the National Academy of Sciences 116(1), pp. 106-115. DOI:10.1073/pnas.1806617115. | ||||
Cerqueti, R and Lupi, C (2021). Some New Tests of Conformity with Benford's Law. Stats 4(3), pp. 745-761. DOI:10.3390/stats4030044. | ||||
Cerqueti, R and Maggi, M (2021). Data validity and statistical conformity with Benford’s Law. Chaos, Solitons & Fractals 144, p. 110740 . DOI:10.1016/j.chaos.2021.110740. | ||||
Cerqueti, R, Maggi, M and Riccioni, J (2022). Statistical methods for decision support systems in finance: how Benford’s law predicts financial risk. Annals of Operations Research. DOI:10.1007/s10479-022-04742-z. | ||||
da Silva, AJ, Floquet, S, Santos, DOC and Lima, RF (2020). On the validation of the Newcomb-Benford Law and the Weibull distribution in neuromuscular transmission. Physica A 553, 1 September 2020, 124606. DOI:10.1016/j.physa.2020.124606. | ||||
Dang, CT and Owens, T (2019). Does transparency come at the cost of charitable services? Evidence from investigating British charities. CREDIT Research Paper 19/02; published (2020) in Journal of Economic Behavior & Organization 172, pp. 314–343. | ||||
Drew, JH, Evans, DL, Glen, AG and Leemis, LM (2017). Products of Random Variables. In:Computational Probability: Algorithms and Applications in the Mathematical Sciences, Springer International Publishing, pp. 73-86. ISSN/ISBN:978-3-319-43323-3. DOI:10.1007/978-3-319-43323-3. | ||||
Drew, JH, Evans, DL, Glen, AG and Leemis, LM (2017). Other Applications. In: Computational Probability. International Series in Operations Research & Management Science, vol 246. Springer, Cham, pp. 301-321. ISSN/ISBN:978-3-319-43323-3. DOI:10.1007/978-3-319-43323-3_15. | ||||
Eliazar, II (2017). Harmonic statistics. Annals of Physics, Volume 380, pp. 168-187. DOI:10.1016/j.aop.2017.03.016. | ||||
Eliazar, II (2020). First Digits. In: Power Laws. Understanding Complex Systems. Springer, Cham, pp. 153-157. DOI:10.1007/978-3-030-33235-8_14. | ||||
Farhadi, N and Lahooti, H (2021). Are COVID-19 Data Reliable? A Quantitative Analysis of Pandemic Data from 182 Countries. COVID 1, pp. 137–152. DOI:10.3390/covid1010013. | ||||
Farhadi, N and Lahooti, H (2022). Forensic Analysis of COVID-19 Data from 198 Countries Two Years after the Pandemic Outbreak. COVID 2(4), pp. 472-484. DOI:10.3390/covid2040034. | ||||
Friedman, E, Kolakaluri, R and Rege, M (2020). Benford’s Law Applied to Precinct Level Election Data. Issues in Information Systems 21(2), pp. 238-247. | ||||
Hall, RC (2018). Why the Summation Test Results in a Benford, and not a Uniform Distribution, for Data that Conforms to a Log Normal Distribution. Preprint viXra.org > Number Theory > viXra:1809.0158; last accessed November 17, 2020. | ||||
Hindls, R and Hronová, S (2015). Benford’s Law and Possibilities for Its Use in Governmental Statistics. Statistika 95( 2), pp. 54-64. | ||||
Hüllemann, S , Schüpfer, G and Mauch, J (2017). Application of Benford's law: a valuable tool for detecting scientific papers with fabricated data?. Der Anaesthesist vol. 66(10), pp. 795--802 . DOI:10.1007/s00101-017-0333-1. | ||||
Ileanu, B-V, Ausloos, M, Herteliu, C and Cristescu, MP (2019). Intriguing behavior when testing the impact of quotation marks usage in Google search results. Quality & Quantity 53(5), pp. 2507-2519. DOI:10.1007/s11135-018-0771-0. | ||||
Jones, WA (2019). A Benford Analysis of National Collegiate Athletic Association Division I Finance Data. Journal of Sports Economics. DOI:10.1177/1527002519887430. | ||||
Kafri, O (2023). Zipf’s Law, Benford’s Law, and Pareto Rule. Advances in Pure Mathematics 13, pp. 174-180. DOI:10.4236/apm.2023.133010. | ||||
Kim, H (2019). Financial Statements Errors in Japanese Firms : Using a Benfordʼs Law. The Journal of Tokyo Keizai University: Business 302, pp. 19-42. JPN | ||||
Kossovsky, AE (2014). Arithmetical Tugs of War and Benford's Law. Preprint arXiv:1410.2174 [math.ST]; last accessed October 19, 2020. | ||||
Kossovsky, AE (2015). Random Consolidations and Fragmentations Cycles Lead to Benford' Law. Preprint arXiv:1505.05235 [math.ST]; last accessed October 19, 2020. | ||||
Kossovsky, AE (2016). Exponential Growth Series and Benford's Law. Preprint arXiv:1606.04425 [math.ST]; last accessed October 19, 2020. | ||||
Kossovsky, AE (2021). On the Mistaken Use of the Chi-Square Test in Benford’s Law. Stats 4(2), pp. 419–453. DOI:10.3390/stats4020027. | ||||
Kossovsky, AE and Miller, SJ (2020). Report on Benford’s Law Analysis of 2020 Presidential Election Data. Preprint. | ||||
Lacasa, L (2019). Newcomb–Benford law helps customs officers to detect fraud in international trade. Proceedings of the National Academy of Sciences 116(1), pp. 11-13. DOI:10.1073/pnas.1819470116. | ||||
Lemons, DS (2019). Thermodynamics of Benford's first digit law. American Journal of Physics 87 (10) pp. 787-790. DOI:10.1119/1.5116005. | ||||
Lemons, DS, Lemons, N and Peter, W (2021). First Digit Oscillations. Stats 4(3), pp. 595-601. DOI:10.3390/stats4030035. | ||||
Luo, P and Li, Y (2018). A new quantity for statistical analysis: "Scaling invariable Benford distance''. Preprint in: arXiv:1803.01117 [physics.data-an]; last accessed October 25, 2018. | ||||
Luty, P (2022). Tax Avoidance, Fraud Detection and Related Accounting Issues - Insights from the Visegrad Group Countries. Publishing House of Wroclaw University of Economics and Business, pp. 99-117. ISSN/ISBN:978-83-7695-970-2. DOI:10.15611/2022.971.9. | ||||
Luty, P and Costa, R (2022). Benford's Law in the Analysis of Inventories of Portuguese Companies. International Journal of Business Innovation 1(4), p. e30282. DOI:10.34624/ijbi.v1i4.30282. | ||||
Mack, V (2016). The Fingerprints of Fraud: An In-depth Study of Election Forensics with Digit Tests. PhD Thesis, Universitat Konstanz. | ||||
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1. | ||||
Ozawa, K (2019). Continuous Distributions on (0, ∞) Giving Benford’s Law Exactly. Preprint arXiv:1905.02031 [math.PR]; last accessed June 6, 2019. | ||||
Pinilla, J, López-Valcárcel, BG, González-Martel, C and Peiro, S (2018). Pinocchio testing in the forensic analysis of waiting lists: using public waiting list data from Finland and Spain for testing Newcomb-Benford’s Law. BMJ open,8(5), pp. 1-6. ISSN/ISBN:2044-6055. DOI:10.1136/bmjopen-2018-022079. | ||||
Ruankong, P and Sumetkijakan, S (2019). Chains of Truncated Beta Distributions and Benford’s Law. Uniform Distribution Theory 14(2), pp. 27–32. DOI:10.2478/udt-2019–0011 . | ||||
Rubin, AE (2021). Benford’s law: Applications to ordinary-chondrite mass distributions. Meteoritics & Planetary Science, pp. 1-14. DOI:10.1111/maps.13626. | ||||
Santiwipanont, T, Sumetkijakan, S and Wiriyakraikul, T (2019). Benfordness of Chains of Truncated Beta Distributions via a Piecewise Constant Approximation. In: Kreinovich V., Sriboonchitta S. (eds) Structural Changes and their Econometric Modeling. TES 2019. Studies in Computational Intelligence, vol 808. Springer, Cham, pp. 342-351. DOI:10.1007/978-3-030-04263-9_26. | ||||
Shi, J, Ausloos, M and Zhu, T (2018). Benford's law is the first significant digit and distribution distances for testing the reliability of financial reports in developing countries. Physica A: Statistical Mechanics and its Applications 492(1), pp. 878-888. DOI:10.1016/j.physa.2017.11.017. | ||||
Silva, AdeA and Gouvêa, MA (2023). Study on the effect of sample size on type I error, in the first, second and first-two digits excessmad tests. International Journal of Accounting Information Systems 48, p. 100599. DOI:10.1016/j.accinf.2022.100599. | ||||
Slepkov, AD, Ironside, KB and DiBattista, D (2015). Benford’s Law: Textbook Exercises and Multiple-Choice Testbanks. PLoS ONE 10(2): e0117972. DOI:10.1371/journal.pone.0117972. | ||||
Tunalioglu, N and Erdogan, B (2019). Usability of the Benford’s law for the results of least square estimation. Acta Geodaetica et Geophysica, pp. 1-17. DOI:10.1007/s40328-019-00259-3. | ||||
Volcic, A (2020). Uniform distribution, Benford’s law and scale-invariance. Bollettino dell'Unione Matematica Italiana. DOI:10.1007/s40574-020-00245-6. |