Arslan, U, Calıyurt, KT and Kahyaoglu, SB (2024). Financial statement anomaly detection based on Benford law and Beneish model: Case of a public sector hospital. The EDP Audit, Control, and Security Newsletter 69, pp.6987. DOI:10.1080/07366981.2024.2312018.





Cella, RS and Zanolla, E (2018). Benford’s Law and transparency: an analysis of municipal expenditure. Brazilian Business Review, 15(4), pp. 331347. DOI:10.15728/bbr.2018.15.4.2.





Charoenwong, B and Reddy, P (2022). Using forensic analytics and machine learning to detect bribe payments in regimeswitching environments: Evidence from the India demonetization. PLoS ONE 17(6): e0268965. DOI:10.1371/journal.pone.0268965.





Coufalová, L, Mikula, S and Žídek, L (2022). Misreporting in financial statements in a centrally planned economy: The case of Czechoslovak stateowned enterprises in late socialism. Accounting History. DOI:10.1177/10323732221109652.





Ergin, E and Erturan, IE (2020). Is Benford’s Law Effective in Fraud Detection for Expense Cycle? . Marmara Üniversitesi İktisadi ve İdari Bilimler Dergisi 42(2), pp. 316–326. DOI:10.14780.muiibd.854444.





Grabski, S (2010). Discussion of 'Data mining journal entries for fraud detection: An exploratory study'. International Journal of Accounting Information Systems, Vol. 11, No. 3, pp. 182–185. DOI:10.1016/j.accinf.2010.07.008.





Jianu, Io and Jianu, Iu (2021). Reliability of Financial Information from the Perspective of Benford’s Law. Entropy 23(5), article no. 557. DOI:10.3390/e23050557.





Karavardar, A (2014). Benford’s Law and an Analysis in Istanbul Stock Exchange (BIST). International Journal of Business and Management, 9(4), pp. 160172. DOI:10.5539/ijbm.v9n4p160.





Nigrini, MJ (2016). The Implications of the Similarity between Fraud Numbers and the Numbers in Financial Accounting Textbooks and Test Banks. Journal of Forensic Accounting Research, Vol. 1, No. 1, pp. A1A26. DOI:10.2308/jfar51465.





Nigrini, MJ (2017). Audit Sampling Using Benford's Law: A Review of the Literature With Some New Perspectives. Journal of Emerging Technologies in Accounting Vol. 14, No. 2,
pp. 29–46. DOI:10.2308/jeta51783.





Nigrini, MJ (2019). The patterns of the numbers used in occupational fraud schemes. Managerial Auditing Journal 34(5), pp. 606626. DOI:10.1108/MAJ1120171717.





Pizzi, S, Venturelli, A, Variale, M and Macro, GP (2021). Assessing the impacts of digital transformation on internal auditing: A bibliometric analysis. Technology in Society 67, p. 101738. DOI:10.1016/j.techsoc.2021.101738.





Sadaf, R (2016). Benford’s Law in the Case of Hungarian WholeSale Trade Sector. SEA – Practical Application of Science 12, pp. 561566.





Seow, PS, Pan, G and Suwardy, T (2016). Data Mining Journal Entries for Fraud Detection: A Replication of Debreceny and Gray's (2010) Techniques. Journal of Forensic and Investigative Accounting 8(3), pp. 501514.





Silva, AdeA and Gouvêa, MA (2023). Study on the effect of sample size on type I error, in the first, second and firsttwo digits excessmad tests. International Journal of Accounting Information Systems 48, p. 100599. DOI:10.1016/j.accinf.2022.100599.




