This work is cited by the following items of the Benford Online Bibliography:
Brown, MS (2012). Does the Application of Benford's Law Reliably Identify Fraud on Election Day? . Masters thesis, Georgetown University. | ||||
Cantu, F and Saiegh, SM (2010). A Supervised Machine Learning Procedure to Detect Electoral Fraud Using Digital Analysis. Preprint posted on SSRN; last accessed August 5, 2021. DOI:10.2139/ssrn.1594406. | ||||
Cantu, F and Saiegh, SM (2011). Fraudulent Democracy? An Analysis of Argentina’s Infamous Decade Using Supervised Machine Learning. Political Analysis 19 (4), pp. 409-433. DOI:10.1093/pan/mpr033. | ||||
Castañeda, G (2011). La ley de Benford y su aplicabilidad en el análisis forense de resultados electorales [Benford’s Law and its Applicability in the Forensic Analysis of Electoral Results]. Política y gobierno 18(2), pp. 297-329. SPA | ||||
Mack, V (2016). The Fingerprints of Fraud: An In-depth Study of Election Forensics with Digit Tests. PhD Thesis, Universitat Konstanz. | ||||
Mebane, WR Jr and Kalinin, K (2009). Electoral Falsification in Russia: Complex Diagnostics Selections 2003-2004, 2007-2008 [Russian] . Russian Electoral Review REO 2/09, pp. 57–70 . RUS | ||||
Mebane, WR Jr and Kalinin, K (2009). Comparative Election Fraud Detection. Presentation at APSA 2009 Toronto Meeting. | ||||
Medzihorsky, J (2015). Election Fraud: A Latent Class Framework for Digit-Based Tests. Political Analysis 23(4), pp. 506-517. DOI:10.1093/pan/mpv021. |