This work is cited by the following items of the Benford Online Bibliography:
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062. | ||||
Caldwell, CK (2008). Does Benford's law apply to prime numbers?. From: The Prime Pages (prime number research, records and resources) FAQ. | ||||
Campanario, JM and Coslado, MA (2011). Benford's law and citations, articles and impact factors of scientific journals. Scientometrics 88(2), pp. 421-432. DOI:10.1007/s11192-011-0387-9. | ||||
Cohen, DIA and Katz, TM (1984). Prime Numbers and the First Digit Phenomenon. Journal of Number Theory 18(3), pp. 261-268. ISSN/ISBN:0022-314X. DOI:10.1016/0022-314X(84)90061-1. | ||||
Egghe, L (2011). Benford’s law is a simple consequence of Zipf’s law. ISSI Newsletter 7(3), pp. 55–56. | ||||
Geyer, CL and Williamson, PP (2004). Detecting Fraud in Data Sets Using Benford's Law. Communications in Statistics: Simulation and Computation 33(1), pp. 229-246. ISSN/ISBN:0361-0918. DOI:10.1081/SAC-120028442. | ||||
Giles, DE (2007). Benford's law and naturally occurring prices in certain eBay auctions. Applied Economics Letters 14(3), pp. 157-161. ISSN/ISBN:1350-4851. DOI:10.1080/13504850500425667. | ||||
Giles, DE (2013). Exact Asymptotic Goodness-of-Fit Testing for Discrete Circular Data, With Applications. Chilean Journal of Statistics 4(1), pp.19-34. ISSN/ISBN:0718-7912. | ||||
Göb, R (2007). Data Conformance Testing by Digital Analysis - A Critical Review and an Approach to More Appropriate Testing. Quality Engineering Volume 19(4), pp. 281-297. DOI:10.1080/08982110701633721. | ||||
Hamadeh, N (2004). Wireless Security and Traffic Modeling Using Benford's Law. Master’s Thesis, University of New Mexico, Albuquerque, NM, 2004 (99 pgs). | ||||
Hill, TP (1988). Random-Number Guessing and the First Digit Phenomenon. Psychological Reports 62(3), pp. 967-971. ISSN/ISBN:0033-2941. DOI:10.2466/pr0.1988.62.3.967. | ||||
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. | ||||
Hill, TP (1995). Base-Invariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887-895. ISSN/ISBN:0002-9939. DOI:10.2307/2160815. | ||||
Hill, TP (1997). Benford law. Encyclopedia of Mathematics Supplement, vol. 1, pp. 102-103. | ||||
Hobza, T and Vajda, I (2001). On the Newcomb-Benford law in models of statistical data. Revista Matematica Complutense XIV(2), pp. 407-420. ISSN/ISBN:1139-1138. | ||||
Hürlimann, W (2003). A generalized Benford law and its application. Advances and Applications in Statistics 3(3), pp. 217-228. | ||||
Hürlimann, W (2009). Generalizing Benford’s law using power laws: application to integer sequences. International Journal of Mathematics and Mathematical Sciences, Article ID 970284. DOI:10.1155/2009/970284. | ||||
Jasak, Z and Banjanovic-Mehmedovic, L (2008). Detecting Anomalies by Benford's Law. In Proceedings of IEEE International Symposium on Signal Processing and Information Technology, 2008. ISSPIT 2008, pp. 453-458 . ISSN/ISBN:978-1-4244-3554-8. DOI:10.1109/ISSPIT.2008.4775660. | ||||
Jech, T (1992). The Logarithmic Distribution of Leading Digits and Finitely Additive Measures. Discrete Mathematics 108(1-3), pp. 53-57. ISSN/ISBN:0012-365X. DOI:10.1016/0012-365X(92)90659-4. | ||||
Kafri, O (2009). Entropy Principle in Direct Derivation of Benford's Law. posted on arXiv 8 March 2009 - arXiv:0901.3047v2. | ||||
Kalaichelvan, M and Jie, SLK (2012). A Critical Evaluation of the Significance of Round Numbers in European Equity Markets in Light of the Predictions from Benford's Law. International Research Journal of Finance and Economics 95, pp. 196-210. ISSN/ISBN:1450-2887. | ||||
Katz, TM and Cohen, DIA (1986). The first digit property for exponential sequences is independent of the underlying distribution. Fibonacci Quarterly 24(1), pp. 2-7. | ||||
Knopfmacher, J (1981). Initial digits in number theory. Fibonacci Quarterly 19(2), pp. 121-126. | ||||
Little, B, Rejesus, R, Schucking, M and Harris, R (2008). Benfords Law, data mining, and financial fraud: A case study in New York State Medicaid data. WIT Transactions on Information and Communication Technologies 40, pp. 195-204. DOI:10.2495/DATA080191. | ||||
Martín, AB (2003). Sistematización del proceso de depuración de los datos en estudios con seguimientos. PhD Thesis, Universitat Autònoma de Barcelona, Spain. SPA | ||||
Mir, TA and Ausloos, M (2018). Benford's law: a 'sleeping beauty' sleeping in the dirty pages of logarithmic tables. Journal of the Association for Information Science and Technology 69(3) pp. 349–358. DOI:10.1002/asi.23845. | ||||
Nagasaka, K (2008). Benford’s Law to Base g of Order r in the Sense of a Certain Density. Short talk at: Colloque international sur la répartition uniforme, Marseille, January 2008. | ||||
Parnes, D (2022). Banks’ Off-Balance Sheet Manipulations. Quarterly Review of Economics and Finance. DOI:10.1016/j.qref.2022.07.011. | ||||
Pavlović, V, Knežević, G, Joksimović, M and Joksimović, D (2019). Fraud Detection in Financial Statements Applying Benford's Law with Monte Carlo Simulation. Acta oeconomica 69(2), pp.217-239. DOI:10.1556/032.2019.69.2.4. | ||||
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349. | ||||
Robertson, JB, Uppuluri, VRR and Rajagopal, AK (1983). First digit phenomenon and ergodic theory. Journal of Mathematical Analysis and Applications 95(2), pp. 375-378. DOI:10.1016/0022-247X(83)90113-0. | ||||
Schatte, P (1988). On mantissa distributions in computing and Benford’s law. Journal of Information Processing and Cybernetics EIK 24(9), 443-455. ISSN/ISBN:0863-0593. | ||||
Seibert, J and Zahrádka, J (2014). First Digit Law and its Application. Scientific Papers of the University of Pardubice Series D, Faculty of Economics and Administration Vol. XXI, No. 30, pp. 75 - 82. CZE | ||||
Wallace, WA (2002). Assessing the quality of data used for benchmarking and decision-making. The Journal of Government Financial Management 51(3), pp. 16-22. | ||||
Wang, L and Ma, B-Q (2023). A concise proof of Benford’s law. Fundamental Research . DOI:10.1016/j.fmre.2023.01.002. | ||||
Xu, X and Zeng, Z (2020). Did Alibaba Fake the Tmall “Double Eleven” Data? Evidence from Benford’s Law. In: Xu J., Duca G., Ahmed S., García Márquez F., Hajiyev A. (eds) Proceedings of the Fourteenth International Conference on Management Science and Engineering Management. ICMSEM 2020. Advances in Intelligent Systems and Computing, vol 1190. Springer, Cham. DOI:10.1007/978-3-030-49829-0_39. |