Adhikari, AK and Sarkar, BP (1968). Distribution of most significant digit in certain functions whose arguments are random variables. Sankhya-The Indian Journal of Statistics Series B, no. 30, pp. 47-58. ISSN/ISBN:0581-5738.
|
|
|
|
|
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572.
|
|
|
|
|
Canessa, E (2003). Theory of analogous force on number sets. Physica A 328, pp. 44-52. DOI:10.1016/S0378-4371(03)00526-0.
|
|
|
|
|
Duncan, RL (1969). Note on the initial digit problem. Fibonacci Quarterly 7(5), pp. 474-475.
|
|
|
|
|
Engel, HA and Leuenberger, C (2003). Benford's law for exponential random variables. Statistics & Probability Letters 63, pp. 361-365. ISSN/ISBN:0167-7152.
|
|
|
|
|
Friedberg, SH (1984). The Distribution of First Digits. College Mathematics Journal 15(2), pp. 120-125. ISSN/ISBN:0049-4925. DOI:10.2307/2686516.
|
|
|
|
|
Giles, DE (2007). Benford's law and naturally occurring prices in certain eBay auctions. Applied Economics Letters 14(3), pp. 157-161. ISSN/ISBN:1350-4851. DOI:10.1080/13504850500425667.
|
|
|
|
|
Gottwald, GA and Nicol, M (2002). On the nature of Benford’s law. Physica A: Statistical Mechanics and its Applications 303(3-4), 387-396.
|
|
|
|
|
Hill, TP (1995). The Significant-Digit Phenomenon. American Mathematical Monthly 102(4), pp. 322-327. DOI:10.2307/2974952.
|
|
|
|
|
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237.
|
|
|
|
|
Hill, TP (1995). Base-Invariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887-895. ISSN/ISBN:0002-9939. DOI:10.2307/2160815.
|
|
|
|
|
Leemis, LM, Schmeiser, BW and Evans, DL (2000). Survival Distributions Satisfying Benford's Law. American Statistician 54(4), pp. 236-241. ISSN/ISBN:0003-1305. DOI:10.2307/2685773.
|
|
|
|
|
Ley, E (1996). On the Peculiar Distribution of the US Stock Indexes' Digits. American Statistician 50(4), pp. 311-313. ISSN/ISBN:0003-1305. DOI:10.1080/00031305.1996.10473558.
|
|
|
|
|
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148.
|
|
|
|
|
Nigrini, MJ (1996). A taxpayer compliance application of Benford’s law. Journal of the American Taxation Association 18(1), pp. 72-91.
|
|
|
|
|
Patil, SA and Uppuluri, VRR (1986). The distribution of first j digits. College Mathematical Journal 17(3), pp. 240-243.
|
|
|
|
|
Pietronero, L, Tosatti, E, Tosatti, V and Vespignani, A (2001). Explaining the uneven distribution of numbers in nature: the laws of Benford and Zipf. Physica A - Statistical Mechanics and its Applications 293(1-2), 297-304. ISSN/ISBN:0378-4371. DOI:10.1016/S0378-4371(00)00633-6.
|
|
|
|
|
Pinkham, RS (1961). On the Distribution of First Significant Digits. Annals of Mathematical Statistics 32(4), pp. 1223-1230. ISSN/ISBN:0003-4851.
|
|
|
|
|
Raimi, RA (1969). On Distribution of First Significant Figures. American Mathematical Monthly 76(4), pp. 342-348. ISSN/ISBN:0002-9890. DOI:10.2307/2316424.
|
|
|
|
|
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349.
|
|
|
|
|
Rodriguez, RJ (2004). First Significant Digit Patterns from Mixtures of Uniform Distributions. American Statistician 58(1), pp. 64-71. ISSN/ISBN:0003-1305. DOI:10.1198/0003130042782.
|
|
|
|
|