This work cites the following items of the Benford Online Bibliography:
Adhikari, AK and Sarkar, BP (1968). Distribution of most significant digit in certain functions whose arguments are random variables. Sankhya-The Indian Journal of Statistics Series B, no. 30, pp. 47-58. ISSN/ISBN:0581-5738. | ||||
Allaart, PC (1997). An invariant-sum characterization of Benford's law. Journal of Applied Probability 34(1), pp. 288-291. | ||||
Becker, PW (1982). Patterns in Listings of Failure-Rate and MTTF Values and Listings of Other Data. IEEE Transactions on Reliability 31(2), 132-134. ISSN/ISBN:0018-9529. | ||||
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572. | ||||
Berger, A, Bunimovich, LA and Hill, TP (2005). One-dimensional dynamical systems and Benford's law. Transactions of the American Mathematical Society 357(1), pp. 197-219. ISSN/ISBN:0002-9947. DOI:10.1090/S0002-9947-04-03455-5. | ||||
Boyle, J (1994). An Application of Fourier Series to the Most Significant Digit Problem. American Mathematical Monthly 101(9), pp. 879-886. ISSN/ISBN:0002-9890. DOI:10.2307/2975136. | ||||
Buck, B, Merchant, AC and Perez, SM (1993). An illustration of Benford’s first digit law using alpha decay half lives. European Journal of Physics 14, pp. 59-63. | ||||
Busta, B and Sundheim, R (1992). Detecting manipulated tax returns with the use of Benford's Law. Center for Business Research Working Paper W95-106-94, St. Cloud State University, Minnesota. | ||||
Busta, B and Weinberg, R (1998). Using Benford’s law and neural networks as a review procedure. Managerial Auditing Journal 13(6), pp. 356-366. DOI:10.1108/02686909810222375. | ||||
De Ceuster, MJK, Dhaene, G and Schatteman, T (1998). On the hypothesis of psychological barriers in stock markets and Benford’s law. Journal of Empirical Finance 5(3), pp. 263-279. DOI:10.1016/S0927-5398(97)00024-8. | ||||
Diaconis, P (1977). The Distribution of Leading Digits and Uniform Distribution Mod 1. Annals of Probability 5(1), pp. 72-81. ISSN/ISBN:0091-1798. | ||||
Feldstein, A and Goodman, R (1976). Convergence Estimates for Distribution of Trailing Digits. Journal of the Association for Computing Machinery 23(2), pp. 287-297. ISSN/ISBN:0004-5411. DOI:10.1145/321941.321948. | ||||
Feller, W (1971). An Introduction to Probability Theory and Its Applications. 2nd ed., J. Wiley (see p 63, vol 2). | ||||
Goto, K (1992). Some examples of Benford sequences. Mathematical Journal of the Okayama University 34, pp. 225-232. | ||||
Gottwald, GA and Nicol, M (2002). On the nature of Benford’s law. Physica A: Statistical Mechanics and its Applications 303(3-4), 387-396. | ||||
Hamming, R (1970). On the distribution of numbers. Bell Syst. Tech. J. 49(8), pp. 1609-1625. ISSN/ISBN:0005-8580. DOI:10.1002/j.1538-7305.1970.tb04281.x. | ||||
Hill, TP (1988). Random-Number Guessing and the First Digit Phenomenon. Psychological Reports 62(3), pp. 967-971. ISSN/ISBN:0033-2941. DOI:10.2466/pr0.1988.62.3.967. | ||||
Hill, TP (1995). The Significant-Digit Phenomenon. American Mathematical Monthly 102(4), pp. 322-327. DOI:10.2307/2974952. | ||||
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. | ||||
Hill, TP (1995). Base-Invariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887-895. ISSN/ISBN:0002-9939. DOI:10.2307/2160815. | ||||
Hill, TP (1999). The difficulty of faking data. Chance 12(3), pp. 27-31. DOI:10.1080/09332480.1999.10542154. | ||||
Hoyle, DC, Rattray, M, Jupp, R and Brass, A (2002). Making sense of microarray data distributions. Bioinformatics 18(4), pp. 576-584. ISSN/ISBN:1367-4803. DOI:10.1093/bioinformatics/18.4.576. | ||||
Jamain, A (2001). Benford’s Law. Master Thesis. Imperial College of London and ENSIMAG. | ||||
Jolion, JM (2001). Images and Benford's Law. Journal of Mathematical Imaging and Vision 14(1), pp. 73-81. ISSN/ISBN:0924-9907. DOI:10.1023/A:1008363415314. | ||||
Knuth, DE (1997). The Art of Computer Programming. pp. 253-264, vol. 2, 3rd ed, Addison-Wesley, Reading, MA. | ||||
Kuipers, L and Niederreiter, H (1974). Uniform Distribution of Sequences. J. Wiley; newer edition - 2006 from Dover. ISSN/ISBN:0486450198. | ||||
Leemis, LM, Schmeiser, BW and Evans, DL (2000). Survival Distributions Satisfying Benford's Law. American Statistician 54(4), pp. 236-241. ISSN/ISBN:0003-1305. DOI:10.2307/2685773. | ||||
Ley, E (1996). On the Peculiar Distribution of the US Stock Indexes' Digits. American Statistician 50(4), pp. 311-313. ISSN/ISBN:0003-1305. DOI:10.1080/00031305.1996.10473558. | ||||
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148. | ||||
Nigrini, MJ (1992). The Detection of Income Tax Evasion Through an Analysis of Digital Frequencies. PhD thesis, University of Cincinnati, OH, USA. | ||||
Nigrini, MJ (1996). A taxpayer compliance application of Benford’s law. Journal of the American Taxation Association 18(1), pp. 72-91. | ||||
Nigrini, MJ (2000). Digital Analysis Using Benford's Law: Tests and Statistics for Auditors. Global Audit Publications: Vancouver, Canada. DOI:10.1201/1079/43266.28.9.20010301/30389.4. | ||||
Pinkham, RS (1961). On the Distribution of First Significant Digits. Annals of Mathematical Statistics 32(4), pp. 1223-1230. ISSN/ISBN:0003-4851. | ||||
Raimi, RA (1969). The Peculiar Distribution of First Digits. Scientific American 221(6), pp. 109-120. ISSN/ISBN:0036-8733. DOI: 10.1038/scientificamerican1269-109. | ||||
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349. | ||||
Raimi, RA (1985). The First Digit Phenomenon Again. Proceedings of the American Philosophical Society 129(2), pp. 211-219. ISSN/ISBN:0003-049X. | ||||
Renaud, P (2002). Scale invariant means and the first digit problem. New Zealand Journal of Mathematics 31, pp. 73-83. | ||||
Schatte, P (1988). On mantissa distributions in computing and Benford’s law. Journal of Information Processing and Cybernetics EIK 24(9), 443-455. ISSN/ISBN:0863-0593. | ||||
Schatte, P (1988). On the Almost Sure Convergence of Floating-Point Mantissas and Benford Law. Math. Nachr. 135, 79-83. ISSN/ISBN:0025-584X. DOI:10.1002/mana.19881350108. | ||||
Schatte, P (1989). On measures of uniformly distributed sequences and Benford's law. Monatshefte für Mathematik 107(3), 245-256. ISSN/ISBN:0026-9255. DOI:10.1007/BF01300347. | ||||
Schatte, P (1998). On Benford's law to variable base. Statistics & Probability Letters 37(4): 391-397. ISSN/ISBN:0167-7152. DOI:10.1016/S0167-7152(97)00142-9. | ||||
Scott, PD and Fasli, M (2001). Benford’s law: an empirical investigation and a novel explanation. CSM Technical Report 349, Department of Computer Science, University of Essex, UK. | ||||
Sentance, WA (1973). A further analysis of Benford’s law. Fibonacci Quarterly 11, 490-494. | ||||
Varian, HR (1972). Benford’s law. The American Statistician 26(3), 65-66. DOI:10.1080/00031305.1972.10478934. | ||||
Weaver, W (1963). The distribution of first significant digits. pp 270-277 in: Lady Luck: The Theory of Probability, Doubleday Anchor Series, New York. Republished by Dover, 1982. ISSN/ISBN:978-0486243429. | ||||
Weisstein, EW (2003). Benford's Law. pp 181-182 in: CRC concise encyclopedia of mathematics, Chapman & Hall. | ||||
Weyl, H (1916). Über die Gleichverteilung von Zahlen mod Eins. Mathematische Annalen 77, 313-352. ISSN/ISBN:0025-5831. DOI:10.1007/BF01475864. GER | ||||
Whitney, RE (1972). Initial digits for the sequence of primes. American Mathematical Monthly 79(2), pp. 150-152. ISSN/ISBN:0002-9890. | ||||
Wlodarski, J (1971). Fibonacci and Lucas Numbers tend to obey Benford’s law. Fibonacci Quarterly 9, 87-88. |