Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572.
|
|
|
|
|
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062.
|
|
|
|
|
Brown, RJC (2005). Benford's Law and the screening of analytical data: the case of pollutant concentrations in ambient air. Analyst 130(9), pp. 1280-1285. ISSN/ISBN:0002-2654. DOI:10.1039/B504462F.
|
|
|
|
|
Burke, J and Kincanon, E (1991). Benford's Law and Physical Constants - The Distribution of Initial Digits. American Journal of Physics 59 (10), p. 952. ISSN/ISBN:0002-9505. DOI:10.1119/1.16838.
|
|
|
|
|
Cerioli, A, Barabesi, L, Cerasa, A, Menegatti, M and Perrotta, D (2019). Newcomb-Benford law and the detection of frauds in international trade. Proceedings of the National Academy of Sciences 116(1), pp. 106-115. DOI:10.1073/pnas.1806617115.
|
|
|
|
|
Cigler, J (1964). Methods of summability and uniform distribution mod 1. Compositio Mathematica 16, pp. 44-51.
|
|
|
|
|
Cohen, DIA (1976). An Explanation of the First Digit Phenomenon. Journal of Combinatorial Theory Series A 20(3), pp. 367-370. ISSN/ISBN:0097-3165.
|
|
|
|
|
Cong, M, Li, C and Ma, B-Q (2019). First digit law from Laplace transform. Phys. Lett. A, 383(16), pp. 1836-1844. DOI:10.1016/j.physleta.2019.03.017
.
|
|
|
|
|
Cong, M and Ma, B-Q (2019). A Proof of First Digit Law from Laplace Transform. Chinese Physics Letters, 36, 7, 070201. DOI:10.1088/0256-307X/36/7/070201.
|
|
|
|
|
Diaconis, P (1977). The Distribution of Leading Digits and Uniform Distribution Mod 1. Annals of Probability 5(1), pp. 72-81. ISSN/ISBN:0091-1798.
|
|
|
|
|
Engel, HA and Leuenberger, C (2003). Benford's law for exponential random variables. Statistics & Probability Letters 63, pp. 361-365. ISSN/ISBN:0167-7152.
|
|
|
|
|
Flehinger, BJ (1966). On the Probability that a Random Integer has Initial Digit A. American Mathematical Monthly 73(10), pp. 1056-1061. ISSN/ISBN:0002-9890. DOI:10.2307/2314636.
|
|
|
|
|
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237.
|
|
|
|
|
Iafrate, JR, Miller, SJ and Strauch, FW (2015). Equipartitions and a distribution for numbers: A statistical model for Benford's law. Phys. Rev. E 91, 062138. DOI:10.1103/PhysRevE.91.062138.
|
|
|
|
|
Jech, T (1992). The Logarithmic Distribution of Leading Digits and Finitely Additive Measures. Discrete Mathematics 108(1-3), pp. 53-57. ISSN/ISBN:0012-365X. DOI:10.1016/0012-365X(92)90659-4.
|
|
|
|
|
Jiang, H, Shen, J-J and Zhao, Y-M (2011). Benford’s Law in nuclear structure physics. Chinese Physics Letters, 28(3), pp. 32101–32104. DOI:10.1088/0256-307X/28/3/032101.
|
|
|
|
|
Leemis, LM, Schmeiser, BW and Evans, DL (2000). Survival Distributions Satisfying Benford's Law. American Statistician 54(4), pp. 236-241. ISSN/ISBN:0003-1305. DOI:10.2307/2685773.
|
|
|
|
|
Lemons, DS (2019). Thermodynamics of Benford's first digit law. American Journal of Physics 87 (10) pp. 787-790. DOI:10.1119/1.5116005.
|
|
|
|
|
Liu, XJ, Zhang, XP, Ni, DD and Ren, ZZ (2011). Benford’s law and cross-sections of A(n,α)B reactions. European Physical Journal A: Hadrons and Nuclei, 47(6), p. 78. DOI:10.1140/epja/i2011-11078-3.
|
|
|
|
|
Luque, B and Lacasa, L (2009). The first-digit frequencies of prime numbers and Riemann zeta zeros. Proc. Royal Soc. A, published online 22Apr09. DOI:10.1098/rspa.2009.0126.
|
|
|
|
|
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148.
|
|
|
|
|
Ni, D and Ren, Z (2008). Benford’s law and half-lives of unstable nuclei. Eur. Phys. J. A 38, 251–255. DOI:10.1140/epja/i2008-10680-8.
|
|
|
|
|
Ni, D, Wei, L and Ren, Z (2009). Benford's Law and β-Decay Half-Lives. Commun. Theor. Phys. 51, 713-716. DOI:10.1088/0253-6102/51/4/25.
|
|
|
|
|
Pericchi, LR and Torres, DA (2011). Quick anomaly detection by the Newcomb-Benford law, with applications to electoral processes data from the USA, Puerto Rico and Venezuela. Statistical Science 26(4), pp. 502-16. DOI:10.1214/09-STS296.
|
|
|
|
|
Shao, L and Ma, BQ (2009). First Digit Distribution of Hadron full width. Modern Physics Letters A, 24(40), 3275-3282. ISSN/ISBN:0217-7323. DOI:10.1142/S0217732309031223.
|
|
|
|
|
Shao, L and Ma, BQ (2010). Empirical mantissa distributions of pulsars. Astroparticle Physics 33, 255-262. DOI:10.1016/j.astropartphys.2010.02.003.
|
|
|
|
|
Shao, L and Ma, BQ (2010). The significant digit law in statistical physics. Physica A 389, 3109-3116. DOI:10.1016/j.physa.2010.04.021.
|
|
|
|
|
Shao, L and Ma, BQ (2010). First-digit law in nonextensive statistics. Physical Review E 82, 041110. DOI:10.1103/PhysRevE.82.041110.
|
|
|
|
|
Snyder, MA, Curry, JH and Dougherty, AM (2001). Stochastic aspects of one-dimensional discrete dynamical systems: Benford's law. Physical Review E 64(2), Art. No. 026222. ISSN/ISBN:1063-651X. DOI:10.1103/PhysRevE.64.026222.
|
|
|
|
|
Varian, HR (1972). Benford’s law. The American Statistician 26(3), 65-66. DOI:10.1080/00031305.1972.10478934.
|
|
|
|
|