AlBandawi, H and Deng, G (2018). Blind image quality assessment based on Benford's law. IET Image Processing 12(11), pp. 1983 – 1993. DOI:10.1049/ietipr.2018.5385 .





Ausloos, M, Castellano, R and Cerqueti, R (2016). Regularities and discrepancies of credit default swaps: a data science approach through Benford's law. Chaos, Solitons & Fractals 90, pp. 817. DOI:10.1016/j.chaos.2016.03.002.





Balashov, VS, Yan, Y and Zhu, X (2021). Using the Newcomb–Benford law to study the association between a country’s COVID19 reporting accuracy and its development. Scientific Reports 11, pp. 22914. DOI:10.1038/s4159802102367z.





Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551572.





Cerioli, A, Barabesi, L, Cerasa, A, Menegatti, M and Perrotta, D (2019). NewcombBenford law and the detection of frauds in international trade. Proceedings of the National Academy of Sciences 116(1), pp. 106115. DOI:10.1073/pnas.1806617115.





Cinelli, C (2017). Benford analysis for data validation and Forensic analytics. Online software R package benford.analysis V. 0.1.4.1.





Diekmann, A (2007). Not the First Digit! Using Benford's Law to Detect Fraudulent Scientific Data. Journal of Applied Statistics 34(3), pp. 321329. ISSN/ISBN:02664763. DOI:10.1080/02664760601004940.





Druica, E, Oancea, B and Valsan, C (2018). Benford's law and the limits of digit analysis. International Journal of Accounting Information Systems 31, pp. 75–82. DOI:10.1016/j.accinf.2018.09.004.





Farhadi, N and Lahooti, H (2022). Forensic Analysis of COVID19 Data from 198 Countries Two Years after the Pandemic Outbreak. COVID 2(4), pp. 472484. DOI:10.3390/covid2040034.





Fewster, RM (2009). A Simple Explanation of Benford's Law. American Statistician 63(1), pp. 2632. DOI:10.1198/tast.2009.0005.





Filho, DF, Silva, L and Carvalhoa, E (2022). The forensics of fraud: Evidence from the 2018 Brazilian presidential election. Forensic Science International: Synergy, p. 100286. ISSN/ISBN:2589871X. DOI:10.1016/j.fsisyn.2022.100286.





Hill, TP (1995). BaseInvariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887895. ISSN/ISBN:00029939. DOI:10.2307/2160815.





Horton, J, Kumar, DK and Wood, A (2020). Detecting academic fraud using Benford law: The case of Professor James Hunton. Research Policy 49(8), 104084
. DOI:10.1016/j.respol.2020.104084.





Idrovo, AJ and ManriqueHernández, EF (2020). Data Quality of Chinese Surveillance of COVID19: Objective Analysis Based on WHO’s Situation Reports. Asia Pacific Journal of Public Health. DOI:10.1177/1010539520927265.





Joenssen, DW (2015). BenfordTests: Statistical Tests for Evaluating Conformity to Benford's Law. R package version 1.2.0 .





Jošić, H and Žmuk, B (2021). Assessing the Quality of COVID19 Data: Evidence from NewcombBenford Law. Facta Universitatis, in press. DOI:10.22190/FUEO210326008J.





Kennedy, AP and Yam, SCP (2020). On the authenticity of COVID19 case figures. PLoS ONE 15(12): e0243123. DOI:10.1371/journal.pone.0243123.





Kilani, A and Georgiou, GP (2021). Countries with potential data misreport based on Benford’s law. Journal of Public Health. DOI:10.1093/pubmed/fdab001.





Koch, C and Okamura, K (2020). Benford's Law and COVID19 Reporting. Posted on SSRN April 28, 2020; last accessed November 17, 2020. Published in Econ Lett 2020;196(109973) .





Kolias, P (2022). Applying Benford’s law to COVID19 data: the case of the European Union. Journal of Public Health, fdac005, pp. 16. DOI:10.1093/pubmed/fdac005.





Mir, TA (2014). The Benford law behavior of the religious activity data. Physica A 408, pp. 19. DOI:10.1016/j.physa.2014.03.074.





Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 3940. ISSN/ISBN:00029327. DOI:10.2307/2369148.





Nigrini, MJ (2012). Benford's Law: Applications for Forensic Accounting, Auditing, and Fraud Detection . John Wiley & Sons: Hoboken, New Jersey. ISSN/ISBN:9781118152850. DOI:10.1002/9781119203094.





Said, T and Mohammed, K (2020). Detection of anomaly in socioeconomic databases, by Benford probability law. 2020 IEEE 6th International Conference on Optimization and Applications (ICOA), Beni Mellal, Morocco, 2020, pp. 14. DOI:10.1109/ICOA49421.2020.9094466.





Silva, L and Filho, DF (2021). Using Benford’s law to assess the quality of COVID19 register data in Brazil. Journal of Public Health 43(1), pp. 107110. DOI:10.1093/pubmed/fdaa193.





Taimori, A, Razzazi, F, Behrad, A, Ahmadi, A and BabaieZadeh, M (2012). A proper transform for satisfying Benford's Law and its application to double JPEG image forensics. Proceedings of 2012 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 000240000244. DOI:10.1109/ISSPIT.2012.6621294.





Varga, D (2020). NoReference Image Quality Assessment Based on the Fusion of Statistical and Perceptual Features. Journal of Imaging 6(8), 75. DOI:10.3390/jimaging6080075.




