MazaQuiroga, R, ThurnhoferHemsi, K, LopezRodrıguez, D and LopezRubio, E (2021). Rician Noise Estimation for 3D Magnetic Resonance Images Based
on Benford’s Law. In: de Bruijne M. et al. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science, vol 12906. Springer, Cham..
This work cites the following items of the Benford Online Bibliography:
AlBandawi, H and Deng, G (2019). Classification of image distortion based on the generalized Benford’s law. Multimedia Tools and Applications, pp. 118. DOI:10.1007/s1104201976683.





Fu, D, Shi, YQ and Su, W (2007). A generalized Benford’s law for JPEG coefficients and its applications in image forensics. Proceedings of SPIE, Volume 6505, Security, Steganography and Watermarking of Multimedia Contents IX, San Jose, California, January 28  February 1, 2007, pp. 65051L65051L11. DOI:10.1117/12.704723.





Jolion, JM (2001). Images and Benford's Law. Journal of Mathematical Imaging and Vision 14(1), pp. 7381. ISSN/ISBN:09249907. DOI:10.1023/A:1008363415314.





Marcel, M (2017). Benford_py: a Python Implementation of Benford's Law Tests. GitHub repository; last accessed October 8, 2021.





Sanches, J and Marques, JS (2006). Image reconstruction using the Benford law. Proceedings of the IEEE International Conference on Image Processing, Atlanta, GA, October 2006, pp. 20292032. ISSN/ISBN:15224880. DOI:10.1109/ICIP.2006.312845.





Smith, SW (1997). Explaining Benford's Law. Chapter 34 in: The Scientist and Engineer's Guide to Digital Signal Processing. California Technical Publishing: San Diego, CA. Republished in softcover by Newnes, 2002. ISSN/ISBN:0966017633.




