Adhikari, AK and Sarkar, BP (1968). Distribution of most significant digit in certain functions whose arguments are random variables. Sankhya-The Indian Journal of Statistics Series B, no. 30, pp. 47-58. ISSN/ISBN:0581-5738.
|
|
|
|
|
Alexopoulos, T and Leontsinis, S (2014). Benford's Law in Astronomy. Journal of Astrophysics and Astronomy, 35(4), pp. 639-648. ISSN/ISBN:0250-6335. DOI:10.1007/s12036-014-9303-z.
|
|
|
|
|
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572.
|
|
|
|
|
Berger, A and Hill, TP (2011). A basic theory of Benford's Law . Probability Surveys 8, pp. 1-126. DOI:10.1214/11-PS175.
|
|
|
|
|
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062.
|
|
|
|
|
Busta, B and Sundheim, R (1992). Detecting manipulated tax returns with the use of Benford's Law. Center for Business Research Working Paper W95-106-94, St. Cloud State University, Minnesota.
|
|
|
|
|
Busta, B and Weinberg, R (1998). Using Benford’s law and neural networks as a review procedure. Managerial Auditing Journal 13(6), pp. 356-366. DOI:10.1108/02686909810222375.
|
|
|
|
|
Cáceres, JLH, García, JLP, Ortiz, CMM and Dominguez, LG (2008). First digit distribution in some biological data sets. Possible explanations for departures from Benford's Law. Electronic J Biomed 1, pp. 27-35.
|
|
|
|
|
De Ceuster, MJK, Dhaene, G and Schatteman, T (1998). On the hypothesis of psychological barriers in stock markets and Benford’s law. Journal of Empirical Finance 5(3), pp. 263-279. DOI:10.1016/S0927-5398(97)00024-8.
|
|
|
|
|
Deckert, J, Myagkov, M and Ordeshook, PC (2010). The Irrelevance of Benford's Law for Detecting Fraud in Elections. CALTECH working paper 9.
|
|
|
|
|
Docampo, S, del Mar Trigo, M, Aira, M, Cabezudo, B and Flores-Moya, A (2009). Benford’s law applied to aerobiological data and its potential as a quality control tool . Aerobiologia 25, pp. 275-283 . ISSN/ISBN:0393-5965. DOI:10.1007/s10453-009-9132-8.
|
|
|
|
|
Durtschi, C, Hillison, W and Pacini, C (2004). The effective use of Benford’s law to assist in detecting fraud in accounting data. Journal of Forensic Accounting 1524-5586/Vol. V, pp. 17-34.
|
|
|
|
|
Hill, TP (1995). Base-Invariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887-895. ISSN/ISBN:0002-9939. DOI:10.2307/2160815.
|
|
|
|
|
Hill, TP and Fox, RF (2016). Hubble’s Law Implies Benford’s Law for Distances to Galaxies. Journal of Astrophysics and Astronomy 37(1), pp. 1-8. ISSN/ISBN:0973-7758. DOI:10.1007/s12036-016-9373-1.
|
|
|
|
|
Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1.
|
|
|
|
|
Moret, MA, de Senna, V, Pereira, MG and Zebende, GF (2006). Newcomb-Benford law in astrophysical sources. International Journal of Modern Physics C 17(11), pp. 1597-1604. ISSN/ISBN:0129-1831. DOI:10.1142/S0129183106010054.
|
|
|
|
|
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148.
|
|
|
|
|
Rane, AD, Mishra, U, Biswas, A, De, AS and Sen, U (2014). Benford's law gives better scale exponents in phase transitions of quantum XY models. Phys. Rev. E 90(2), p. 022144 (previously available from
http://arxiv.org/abs/1405.2744). DOI:10.1103/PhysRevE.90.022144.
|
|
|
|
|
Sambridge, M, Tkalčić, H and Jackson, A (2010). Benford's law of first digits: a universal phenomenon. Australian National University, Research School of Earth Sciences, Research Highlights.
|
|
|
|
|
Shao, L and Ma, BQ (2010). The significant digit law in statistical physics. Physica A 389, 3109-3116. DOI:10.1016/j.physa.2010.04.021.
|
|
|
|
|
Sottili, G, Palladino, DM, Giaccio, B and Messina, P (2012). Benford's Law in Time Series Analysis of Seismic Clusters. Mathematical Geosciences Volume 44, Number 5 (2012), pp. 619-634. DOI:10.1007/s11004-012-9398-1.
|
|
|
|
|