Cross Reference Down

Farbaniec, M, Grabiński, T, Zabłocki, B and Zając, W (2011). Application of the first digit law in credibility evaluation of the financial accounting data based on particular cases. Presentation for 10th International Congress on Internal Control, Internal Audit, Fraud and Anti-Corruption Issues, Kraków, September 14-16, 2011.

This work cites the following items of the Benford Online Bibliography:


Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572. View Complete Reference Online information No Bibliography works referenced by this work. Works that reference this work
Boyle, J (1994). An Application of Fourier Series to the Most Significant Digit Problem. American Mathematical Monthly 101(9), pp. 879-886. ISSN/ISBN:0002-9890. DOI:10.2307/2975136. View Complete Reference Online information Works that this work references Works that reference this work
Durtschi, C, Hillison, W and Pacini, C (2004). The effective use of Benford’s law to assist in detecting fraud in accounting data. Journal of Forensic Accounting 1524-5586/Vol. V, pp. 17-34. View Complete Reference Online information Works that this work references Works that reference this work
Hamming, R (1970). On the distribution of numbers. Bell Syst. Tech. J. 49(8), pp. 1609-1625. ISSN/ISBN:0005-8580. DOI:10.1002/j.1538-7305.1970.tb04281.x. View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. View Complete Reference Online information Works that this work references Works that reference this work
Hill, TP (1995). Base-Invariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887-895. ISSN/ISBN:0002-9939. DOI:10.2307/2160815. View Complete Reference Online information Works that this work references Works that reference this work
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148. View Complete Reference Online information No Bibliography works referenced by this work. Works that reference this work
Nigrini, MJ (2000). Digital Analysis Using Benford's Law: Tests and Statistics for Auditors. Global Audit Publications: Vancouver, Canada. DOI:10.1201/1079/43266.28.9.20010301/30389.4. View Complete Reference Online information No Bibliography works referenced by this work. Works that reference this work
Nigrini, MJ and Miller, SJ (2009). Data Diagnostics Using Second-Order Tests of Benford's Law. Auditing: A Journal of Practice & Theory 28(2), pp. 305-324. DOI:10.2308/aud.2009.28.2.305 . View Complete Reference Online information Works that this work references Works that reference this work
Pinkham, RS (1961). On the Distribution of First Significant Digits. Annals of Mathematical Statistics 32(4), pp. 1223-1230. ISSN/ISBN:0003-4851. View Complete Reference Online information Works that this work references Works that reference this work
Schatte, P (1988). On mantissa distributions in computing and Benford’s law. Journal of Information Processing and Cybernetics EIK 24(9), 443-455. ISSN/ISBN:0863-0593. View Complete Reference Online information Works that this work references Works that reference this work
Watrin, C, Struffert, R and Ullmann, R (2008). Benford’s Law: an instrument for selecting tax audit targets?. Review of Managerial Science 2(3), 219-237. DOI:10.1007/s11846-008-0019-9. View Complete Reference Online information Works that this work references Works that reference this work